TECHNISCHE
UNIVERSITAT
WIEN

BACHELORARBEIT

Erzeugen von zufalligen

Graphen und Spannbaumen

ausgefithrt am

Institut fur
Diskrete Mathematik und Geometrie
TU Wien

unter der Anleitung von

Benedikt Stufler

durch

Cederic Demoulin
Matrikelnummer: 11901874

Wien, am 10. Mai 2024

Eidesstattliche Erklarung

Ich erkldre an Eides statt, dass ich die vorliegende Bachelorarbeit selbststdndig und ohne
fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt
bzw. die wortlich oder sinngeméfl entnommenen Stellen als solche kenntlich gemacht habe.

Wien, am 10. Mai 2024

Cederic Demoulin

Inhaltsverzeichnis

1 Einleitung

2 Grundlagen
2.1 Graphen
2.2 Statistik

3 Erdos-Rényi Graphen in Python

4 Spannbdaume generieren
4.1 Groundskeeper Algorithmus
4.2 schnellerer Algorithmus L o

5 Blatter von Spannbaumen
5.1 Oberer Schranke
5.2 Untere Schranke
5.3 Empirische Verteilung der Blatter

Literaturverzeichnis

Abbildungsverzeichnis

16
16
26

30
30
34
37

38
39

1 Einleitung

Graphen und ihre Teilstruktur, die sogenannten Spannbédume, spielen eine fundamentale
Rolle in der Informatik, Optimierung und verschiedenen Anwendungsgebieten davon. Die
Fahigkeit, diese Strukturen zu analysieren, zu verstehen und effizient zu generieren, hat
weitreichende Auswirkungen auf zahlreiche algorithmische Probleme und praxisrelevante
Anwendungen. Diese Bachelorarbeit widmet sich Algorithmen zur zufilligen Generierung
von Graphen und Spannbdumen.

Graphen bieten eine abstrakte Darstellung von Beziehungen und Verbindungen zwischen
Objekten. In zahlreichen Disziplinen, einschlieBlich der Analyse von sozialen Netzwerken,
Verkehrsplanung, Netzwerkdesign und Optimierung von Prozessen, sind Graphenmodelle
unerlésslich.

Die Generierung von zufélligen Graphen und Spannbdumen ist ein interessantes For-
schungsgebiet, da sie tiefe Einblicke in die Struktur und das Verhalten von Graphen er-
moglicht. Zufallsgraphen dienen als Modelle fiir reale Netzwerke, in denen die genauen
Verbindungen zwischen den Elementen nicht im Voraus bekannt sind. Die Entwicklung
effizienter Algorithmen zur zufélligen Generierung von Graphen und Spannbdumen hat
direkte Auswirkungen auf die Bewertung von Algorithmen in der durchschnittlichen Fall-
komplexitdt und ermoglicht eine realistischere Simulation von Netzwerken.

Da Graphen eine grofle Rolle in Bereich Data Science spielen, und Python eine sehr
beliebte Programmiersprache in diesem Feld ist, wird in dieser Arbeit die Implementierung
von Algorithmen in Python gezeigt. Die Bibliothek networkx hat sich als die de facto
Standardbibliothek fiir Graphen in Python etabliert. Mit ihr lassen sich sehr leicht zuféllige
Graphen generieren und analysieren. In dieser Arbeit werden die Algorithmen die networkx
verwendet, um zufillige Erdés-Rényi Graphen zu generieren, analysiert und verglichen. In
ihrer Arbeit Fast Random Graph Generation haben Nobari et al. | | verschiedene
Algorithmen zur zufélligen Generierung von ebendiesen Graphen in C++ implementiert und
verglichen. In dieser Arbeit werden 2 dieser Algorithmen in Python implementiert und mit
denen von networkx verglichen.

Von zufilligen Graphen gehen wir zu zufélligen Spannbdumen von Graphen iiber. Dazu
beschreiben wir den Groundskeeper Algorithmus und zeigen, dass der daraus resultierende
Spannbaum gleichverteilt ist. Eine Implementierung in Python wird auch hier wieder ge-
zeigt. Fiir reguldre Graphen wird ein Algorithmus vorgestellt, der wesentlich effizienter ist
als der Groundskeeper Algorithmus. Die wichtigste Quelle fiir dieses Kapitel ist die Arbeit
The random walk construction of uniform spanning trees and uniform labelled trees von D.
J. Aldous |].

Im letzten Kapitel wird die Wahrscheinlichkeit betrachtet, dass ein Knoten in einem zu-
falligen Spannbaum eines Graphen ein Blatt ist. Dafiir werden wir diese Wahrscheinlichkeit
nach oben sowie nach unten abschétzen. Die Schranken stammen ebenfalls aus der Arbeit
von Aldous. Zum Schluss wird die Schranke empirisch getestet, es wird der Groundskeeper

1 FEinleitung

Algorithmus verwendet, um zuféllige Spannbdume zu generieren und der Anteil der Baume
berechnet, in denen ein bestimmter Knoten ein Blatt ist. Die Schranken erweisen sich als
dufert groBziigig.

2 Grundlagen

FEinige grundlegende Definitionen und Konzepte aus der Graphentheorie und der Statistik
werden in diesem Kapitel vorgestellt.

2.1 Graphen

Definition 2.1.1 (einfacher Graph). | | Ein einfacher Graph G ist ein Tupel (V, E)
mit einer einer endlichen Menge V' von Knoten und einer endlichen Menge E von Kanten.
E C {{v,w}|v,w € V,v # w}. Zwei Knoten v, w werden benachbart genannt, wenn sie durch
eine Kante verbunden sind: Je € E : e = {v, w}. Wir schreiben in diesem Fall auch v ~ w.
Die Menge der benachbarten Knoten von v wird als N(v) bezeichnet. Die Anzahl der
Knoten in N(v) wird als Grad von v bezeichnet. Einen Graphen G’ = (V’/, E’) nennen wir
Teilgraph von G = (V, E), wenn V' C V und E’ C F gilt.

Wir werden nur mit einfachen Graphen arbeiten weswegen wir statt von einem einfachen
Graphen nur von einem Graphen sprechen werden.

Definition 2.1.2 (reguldrer Graph). Ein Graph G heifit regulér falls gilt:
YoeV:|N@w)| =k

also alle Knoten den gleichen Grad haben. Man nennt einen Graphen k-reguldr, wenn jeder
Knoten Grad k hat.

(a) 3-reguldrer Graph mit 6 (b) 3-reguldrer Graph mit 8 (c) 6-reguldrer Graph mit 8 Kno-
Knoten Knoten ten

Abbildung 2.1: Beispiele fiir reguldre Graphen

Definition 2.1.3 (zusammenhéngender Graph). Ein Graph G = (V, E) heifit zusammen-
héngend, wenn gilt:

Yo,weV:Juy,...,op€Vivy=vo,=wAVie{l,...,n—1} : {v,v;i41} € E

Es gibt zwischen jedem Knotenpaar einen Pfad.

2 Grundlagen

Definition 2.1.4 (vollstdndiger Graph). Ein Graph G heifit vollstindig, wenn gilt:
Vo,w eV {v,w} € E
also jeder Knoten mit jedem anderen Knoten verbunden ist.

Definition 2.1.5 (Baum). Ein Baum ist ein Graph 7', in dem es keine Folge v1,...,v,
von Knoten gibt, sodass v; und v;4; fiir ¢ = 1,...,n — 1 benachbart sind und v, = v;.

Definition 2.1.6 (Spannbaum). Ein Teilgraph T' = (Vp, E7) eines Graphen G = (V, E)
heifit Spannbaum, wenn 7" ein Baum ist und Vp = V gilt.

® @b@

(a) vollstandiger Graph mit 6 Knoten (b) Spannbaum von 2.2a

Abbildung 2.2: vollstdndiger Graph Kg und Spannbaum davon

2.2 Statistik

Definition 2.2.1 (stochastischer Prozess). |] Sei (€2, F,P) ein Wahrscheinlichkeits-
raum und (Z, Z) Messraum und 7" eine Indexmenge. Dann heifit eine Familie X = (X;)ier

messbarer Abbildungen
X :Q— Z,teT

stochastischer Prozess (mit Zustandsraum 7).

Definition 2.2.2 (stationdrer stochastischer Prozess). [| Ein stochastischer Prozess
(Xt)ter mit der Indexmenge T' heifit stationdr, wenn die Verteilung von (Xyt)ier nicht
von der Verschiebung s € T" abhéngt, also wenn gilt

Px ((Xs+t)ter) = Px ((Xt)ter)
fur alle s € T

Definition 2.2.3 (Markov-Kette). | | Ein stochastischer Prozess (X¢)ien, der nur
Werte aus einem hochstens abzéhlbaren Zustandsraum Z annimmt, wird Markov-Kette
genannt, wenn gilt:

P(zi41 = ze41|2t = 20, -1 = 2Z4—1,- .., To = Jo)

=P(xt41 = 2p41|Te = 2¢)

2 Grundlagen

fiir alle t € Ng und alle (2o, ...,2:11) € Z*2. Diese Eigenschaft nennt man auch Gedicht-
nislosigkeit. Die Groflen
Pz(t) = P(zp11 = vl = 2)

werden Ubergangswahrscheinlichkeiten genannt. Sind diese nicht von ¢ abhéingig, so spricht
man von stationiren Ubergangswahrscheinlichkeiten und einer homogenen Markov-Kette.
Die Matrix P(t) mit Eintrigen p.,(t) mit z,0 € V ist dann die Ubergangsmatrix der
Markov-Kette. Da wir nur mit homogenen Markov-Ketten zu tun haben, werden wir P fir
die Ubergangsmatrix schreiben.

Definition 2.2.4 (stationdre Verteilung). | | Sei (Xt)ter eine Markov-Kette mit In-
dexmenge T, Zustandsraum Z und Ubergangsmatrix P. Eine Verteilung 7 heifit stationir,
falls fiir alle v € Z gilt:

> w(2)pep = w(v) (2.1)

z2€Z

Fasst man 7 als Zeilenvektor auf, so kann man 2.1 auch in der Form

wP=m
beschreiben.

Definition 2.2.5 (erreichbar, kommunizierend). | | Sei (X¢)ten, eine Markov-Kette,
mit Zustandsraum Z, Ubergangsmatrix P und zwei Zustinden 4,j € Z. Der Zustand j
heiflt von ¢ aus erreichbar, falls es einen Pfad von i nach j gibt. Das heifit,

Idn>1: Px(Xyn=4lXe=1)>0 t € Np.
Ist 4 auch von j aus erreichbar, so heiflen 4 und j kommunizierend.

Definition 2.2.6 (irreduzibel). | | Ist C' C Z eine Teilmenge des Zustandsraums Z
einer Markov-Kette und kommunizieren alle i, 7 € C miteinander, so heifit C' irreduzibel.
Ist Z irreduzibel, so heifit die Markov-Kette irreduzibel.

3 Erdos-Rényi Graphen in Python

In diesem Kapitel steht die Erzeugung von Erdds-Rényi Graphen im Mittelpunkt, wobei
vier unterschiedliche Algorithmen untersucht werden. Die Python-Bibliothek networkx,
welche die de-facto Standardbibliothek fiir das Erstellen, Manipulieren und Analysie-
ren von Graphen in Python ist, beinhaltet die Algorithmen gnp_random_graph und
fast_gnp_random_graph, welche ndher beschreiben werden. In den Paper von Batagelj
und Brandes | |, welches auch in networkx referenziert wird, werden diese und wei-
tere Algorithmen zu Generierung von Graphen vorgestellt und verglichen. Zwei weitere
Algorithmen, die in diesem Paper vorgestellt werden, sind PreLogZER und PreZER, wel-
che in diesem Kapitel ebenfalls beschrieben werden. Zum Schluss werden die Algorithmen
verglichen und die Ergebnisse diskutiert. []

gnp_random_graph

Die Funktion gnp_random_graph aus dem Modul networkx.generators.random_graphs
mit den Parametern n,p und seed generiert einen Graphen mit n Knoten und einer Wahr-
scheinlichkeit p, dass eine Kante zwischen zwei Knoten existiert. Leicht vereinfacht, arbeitet
die Funktion gnp_random_graph wie in Abbildung 3.1 dargestellt. Die Funktion geht alle
Kanten des Graphen durch und entscheidet fiir jede Kante einzeln, ob sie im generierten
Graphen existiert oder nicht. Dabei wird fiir jede Kante eine Zufallszahl zwischen 0 und
1 generiert. Ist diese Zufallszahl kleiner als p, so wird die Kante hinzugefiigt, wenn nicht,
existiert die Kante im generierten Graphen nicht. Die Anzahl der Schleifendurchliufe ist
also abhéngig von der Anzahl der Kanten in einem vollstdndigem Graphen mit n Knoten.
Dies ist () = @ Der Aufwand dieser Funktion ist somit O(n?). | il]

fast__gnp_random_graph

Betrachtet man die Verteilung der Anzahl an Kanten in dem durch gnp_random_graph
generierten Graphen, bemerkt man, das es sich hierbei um eine Binomialverteilung handelt.
Wir bezeichnen mit E die Menge der Kanten in dem generierten Graphen, dann gilt:

VO <k < (Z) . P(|E| = k) = <(Z)>pk<1 _p)(B)-k

Nach dem Erwartungswert der Binomialverteilung gilt:
©

E(|E|) = =
1ED =3 o(3)

3 Erdés-Rényi Graphen in Python

1 import networkx as nx
2 import itertools
3 import random

5 def gnp_random_graph(n: int, p, seed=None) -> nx.Graph:

nnn

7 creates a random graph with n nodes and a probability p
. nmn

9 random. seed (seed)

10 edges = itertools.combinations(range(n), 2)
11

12 G = nx.Graph()

13 G.add_nodes_from(range(n))

14 for e in edges:

15 if random.random() < p:

16 G.add_edge (*e)

17 return G

Abbildung 3.1: gnp_random_graph in networkx

Dieser Wert ist also die erwartete Anzahl an Schleifendurchldufen, in denen wir ei-
ne Kante hinzufiigen. Um die Anzahl der Schleifendurchldufe zu verringern, wird in
fast_gnp_random_graph nicht fiir jede Kante eine Zufallszahl generiert, die iiber deren
Existenz entscheidet, sondern die Zufallszahl entscheidet in wie vielen Schleifendurchlaufen
die néchste Kante hinzugefiigt wird. Dazu betrachten wir fiir kK > 1 die Wahrscheinlichkeit,
mit der die néichste Kante erst wieder nach k — 1 Schleifendurchldufen hinzugefiigt wird.
Dies ist eine einfache, geometrische Verteilung mit Parameter p.

Y0 < k : P(néchste Kante in k Schleifendurchléufen) = (1 — p)*~1.p

Da wir weiterhin nur aus dem Interval [0, 1) samplen wollen, miissen wir das Interval [0, 1)
auf die Wartezeiten k abbilden. Dazu verwenden wir die Funktion:
k

I(k):=) (1-p*t-p=1-(1-p’
i=1
Wir bilden r < [0, 1) wie folgt auf £ > 1 ab:
:10,1) = N
w101) , (3.1)
r+— k(r) :=min{k e N |r < I(k)}

Es ist zu zeigen, dass k wohldefiniert und surjektiv ist.
Surjektivitdt: Sei k € N beliebig, dann gilt:
P(k(r)=k)=PUI(k—-1) <r < I(k))
=(1-pFtp

3 Erdés-Rényi Graphen in Python

Somit ist k surjektiv.
Wohldefiniertheit: Fiir die Wohldefiniertheit ist zu zeigen: Vr € [0,1) : 3k € N : k(r) = k.
Fiir die Existenz reicht es zu zeigen, dass limy_,o, I(k) = 1.

00
1' g J— (k_l) .
Jim 1 (k) > (1-p) p
k=1
00
= p-y (1—p)F
k=0
geometische Reihe 1
1-(1-p)
= 1

Die Eindeutigkeit folgt aus der Monotonie von I. Wir miissen aulerdem nachrechnen, dass
k tatsédchlich r auf N nach der geometrischen Verteilung abbildet. Sei & € N beliebig, dann
gilt:

(P)=k = B (k-1 <r<I(k)=1-(- 2 — (1= (1= p)Y)

=(1-p)F"tp

Wir kénnen k auch explizit durch r ausdriicken. Sei dazu r € [0, 1) beliebig, dann gilt wegen
3.1:

k(r) =1 < r < K(r)
SR A —p)itp < r < SO —p)itp
1-(1-p0t < r < 1-(1-py®
(1= pyr) ™ = L—r > (1—p)=t)
Ii(r) -1 < log(l — r)/log(l — p) < H(T)

Somit gilt:

0= [g=|

was mit 1+ int(math.log(1l-r)/math.log(1-p)) in Python implementiert werden kann
und in Abbildung 3.2 dargestellt ist. Durch die zwei Schleifen, die insgesamt einmal die
Knoten und die Kanten durchgehen, ist der Algorithmus linear in der Anzahl der Knoten
und Kanten, also O(n +m). |]

Der Algorithmus geht in lexikografischer Ordnung die Kanten des vollstdndigen Graphen
durch. Anders betrachtet, geht der Algorithmus die untere Dreiecksmatrix Reihe fiir Reihe
durch. Es werden int(1r/1lp) Kanten iibersprungen und die néchste Kante hinzugefiigt.
Als Beispiel generieren wir einen Graphen mit 4 Knoten. Sei die Kantenwahrscheinlichkeit
p = 0.5 und die Knotenmenge V' = {v1,v2,v3,v4}. Dadurch ergibt sich fiir Zeile 12 in
Algorithmus 3.2: 1p = 1og(0.5). Dann sind die Kanten in Lexikografischer Ordnung:

E = {(v1,v0), (v, v0), (v2,v1), (v3,00), (v3,01), (v3,v2)}

3 Erdés-Rényi Graphen in Python

4 def fast_gnp_random_graph(n: int,p, seed=42) -> nx.Graph:
. win

6 :param n: number of nodes

; win

5 random. seed (seed)

9 G = nx.empty_graph(n)

10 if p <=0 or p >= 1:

11 return nx.gnp_random_graph(n, p, seed=seed)
12 1p = log(1.0 - p)

13 v =1

14 w= -1

15 while v < n:

16 1r = log(1.0 - random.random())
17 k =1+ int(lr / 1p)

18 w=w+k

19 while w >= v and v < n:

20 W=Ww -V

21 v=v+1

22 if v < n:

23 G.add_edge(v, w)

24 return G

Abbildung 3.2: schnellerer Algorithmus fiir kleine p um einen random Graph in networkx
7ZU generieren

Abbildung 3.3: K4 mit beschrifteten Kanten wie in fast_gnp_random_graph

Die Werte der Zufallsvariablen r im folgenden Beispiel wurden mit random.random() ge-
neriert.

e Initialisiere v = 1 und w = —1

. r<—0.084:>k:1+[%J:1:>w:O:>E:{elo}

e 05l k=14 | RO —2 s w =25 w=1Av=2= E={cn,cn}

3 Erdés-Rényi Graphen in Python

o] Ten] o=

Abbildung 3.4: Reihenfolge der Kanten in Algorithmus 3.2 anhand der unteren Dreiecks-
adjazenzmatrix

. 7“%0.864ék:1+[ki§$01§)6w =3=>w=4=w=2ANv=3=F = {e10,e21,€32}

o Das Programm terminiert, da nach néchster Iteration w > 2 wére und so w > v(= 2)
gelten wiirde wodurch v erh6éht wird, weswegen dann v > n = 3 gilt, was die duflere
while-Schleife terminieren lésst.

PreLogZER

Eine weitere Moglichkeit, die Laufzeit von fast_gnp_random_graph fiir gewisse Umstédnde
zu verringern, kann durch das Berechnen der Logarithmen der Zufallszahlen im Voraus
geschehen. Das ist von Vorteil, wenn die Anzahl an Schleifendurchldaufen gréfer ist, als die
Anzahl der verschiedenen Zufallszahlen, die generiert werden. Pythons random Modul gene-
riert Zufallszahlen mit gleichem Abstand und einer Prézision von 53 bit. [pyvt] Das bedeutet
auch, dass die Funktion random.random() 2°% — 1 verschiedene Zufallszahlen im Halbof-
fenen Intervall [0, 1) generieren kann. Fiir die Anwendung der random.random() Funktion
in den Implementierungen gnp_random_graph 3.1 und fast_gnp_random_graph 3.2 heifit
das, dass diese nur fiir eine Wahrscheinlichkeit p bis zu einer Prizision von 2°3 sinnvoll
sind. Um das einzusehen, betrachten wir die Zahl p; = 0.05954861408025609, welche nicht
durch die Funktion random.random() generiert werden kann, da sie kein Vielfaches von
2753 ist. Somit gilt fiir p; und ps = 536366232364542 - 2753, das nichst groBere Vielfache
von 2753:

#r € random.random() : p; <7 < p2

Dadurch werden die Implementierungen fiir p1, p2 und gleichen Seed auch immer die glei-
chen Graphen liefern.

Wenn wir die Auswahl der Moglichen Werte des Parameter p € (0, 1) einschrinken, kon-
nen wir auch die Genauigkeit der Zufallszahl r einschrénken und so ab einer gewissen Anzahl
von Knoten n die Anzahl der Aufrufe der Logarithmusfunktion nach oben beschrianken. In

10

3 Erdés-Rényi Graphen in Python

der Implementierung fast_gnp_random_graph 3.2 ist die erwartete Anzahl an Aufrufen
der Logarithmusfunktion p - @ In Abhéngigkeit, der Anzahl der Knoten n, der Wahr-
scheinlichkeit p und der Anzahl der moglichen Zufallszahlen maxrand werden somit unter
folgender Bedingung in der Implementierung von PreLogZER 3.5 weniger Logarithmusfunk-
tionen aufgerufen als in fast_gnp_random_graph:

n(n—1)

p- — > maxrand

1 1 maxrand maxrand 2
Sn> -+ +2 ——— O | ———
2 4 P P

Unter der Annahme, dass das Lesen eines Wertes aus einer Liste mit den zuvor berechneten
Logarithmen der Zufallszahlen 7, schneller ist, als das berechnen des Logarithmus einer
Zufallszahl, kénnen wir so die Laufzeit verringern.

PreZER

Im vorherigen Algorithmus haben wir sichergestellt, dass jeder Logarithmus nur maximal
ein Mal berechnet wird. Da die Berechnung des Logarithmus lediglich dazu dient, Ab-
stufungen der Verteilungsfunktion zu errechnen, kénnen wir den Mehraufwand durch die
Berechnung des Logarithmus ganz umgehen, in dem wir die Abstufungen im Voraus be-
rechnen. Die Abstufungen sind fiir verschiedene p in 3.6 dargestellt. Fiir grofle p ist die
Verteilungsfunktion schon fiir kleine £ nah an 1, was bedeutet, dass die Wahrscheinlichkeit
in fast_gnp_random_graph ein grofles k zu samplen, klein ist. Natiirlich kénnen wir nicht
alle Abstufungen im Voraus berechnen, da es unendlich viele gibt. Wir kénnen aber, bis zu
einem gewissen, von uns festgelegtem max_k, alle Funktionswerte Fj,(k) berechnen und so
F,(max_k) - 100% aller moglichen Fille und Zufallszahlen r € [0,1) abdecken, fiir die wir
dann keinen Logarithmus log(1-r) mehr berechnen miissen. Die Wahl von max_k ist dabei
die entscheidende Frage. Das héngt von der Verbesserung der Laufzeit, die die Berechnung
der Abstufungen mit sich bringt ab.

Vergleich der Algorithmen

Der Vergleich der Beschriebenen Algorithmen verlief nicht wie erwartet, da sich die Laufzeit
der Algorithmen in Python nicht wie in |] verhilt. In | , Nobari et. al.]
wurden die Laufzeiten der Algorithmen anhand von Graphen mit einer Knotenanzahl von
10000 gemessen. Die Algorithmen wurden in C4++ implementiert und die durchschnittliche
Laufzeit anhand von 10 erstellten Graphen gemessen.

Zunéchst viel auf, dass Implementierung von PreLogZER sich nicht mit den anderen Al-
gorithmen vergleichen lisst, da durch die Einschrankung der Domain der Zufallsvariablen
r nicht die hoch optimierte random.random() Funktion verwendet werden kann. Stattdes-
sen wurde random.randint () verwendet. Dadurch ist die Laufzeit von PreLogZER um ein
vielfaches langsamer als die der anderen Algorithmen.

Fiir die anderen 3 Algorithmen wurde die Laufzeit fiir Graphen mit 10000 Knoten ge-
messen, wobei fiir jede Kantenwahrscheinlichkeit p = 0.1,...0.6 6 Graphen erzeugt wurden
und deren durchschnittliche Laufzeit genommen wurde.

11

3 Erdés-Rényi Graphen in Python

1 import networkx as nx

2 from math import log

3 import random

4

5 def PreLogZER(n: int,

6 p: float,

7 randmax: int = 65536,

8 seed=None) -> nx.Graph:
0 "

10 :param n: number of modes

11

12 i

13 random.seed(seed)

14 1r = []

15 for i in range(randmax):

16 1r.append(log((i+1)/randmax))
17 G = nx.empty_graph(n)

18 if p <=0 or p >= 1:

19 return nx.gnp_random_graph(n, p, seed=seed)
20 1p = log(l.o = p)

21 v =1

22 w = -1

23 while v < n:

24 r = random.randint (0, randmax-1)
25 w += 1 + int(Qr[r] / 1p)

26 while w >= v and v < n:

27 W=WwW-V

28 v=v+1

29 if v < n:

30 G.add_edge(v, w)

31 return G

Abbildung 3.5: PreLogZER

Es stellt sich heraus, dass die Vorausberechnung der Abstufungen keinen Geschwindig-
keitsvorteil im Vergleich zu fast_gnp_random_graph und gnp_random_graph bringt. Im
Gegenteil, der Graph 3.8 zeigt, dass die Laufzeit besonders fiir grofie p steigt. Es scheint
so, als wiirde das ersetzen des Logarithmus durch einen Lookup-Table in Python nicht
schneller sein. Recht gibt uns die networkx Library, die zum generieren von Erdés—Rényi
Graphen nur die Algorithmen 3.1 und 3.2 verwendet, ersten fiir grofle p und zweiten fiir
diinne Graphen.

In 3.8 kann man erkennen, dass bis zu einer Kantenwahrscheinlichkeit von ungefdhr
p = 0,4 der Algorithmus fast_gnp_random_graph 3.2 schneller ist und danach gegen-

12

3 Erdés-Rényi Graphen in Python

/
e

e

5ol -Soll SO B =102
e

) BE® p =05
) H p =075

10 11 12 13 14

Abbildung 3.6: Verteilungsfunktionen der geometrischen Verteilung F,(k) = (1 —p)k~1-p
fir p € {0.1,0.2,0.3,0.5,0.75}

iiber gnp_random_graph 3.1 an Laufzeit verliert. Das liegt an der geringeren Anzahl an
Schleifendurchléufen aber dem gréfleren Aufwand durch die Berechnung des Logarithmus,
welche sich erst bei groflien p bemerkbar macht. Fir beide scheint die Laufzeit linear in der
Kantenwahrscheinlichkeit zu sein.

13

3 Erdés-Rényi Graphen in Python

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

38

import networkx as nx

from math import log,pow,floor

import random

from time import process_time

import numpy as np

MAX_ M = 9

def PreZER(n: int, p, max_m: int = MAX_M, seed = 42) -> nx.Graph:
:param n: number of modes
:param p: probability of edge creation

:param maz_m: number of precomputed breakpoints of the comulative

distribution
random. seed (seed)
G = nx.empty_graph(n)
if p <=0 or p >= 1:
return nx.gnp_random_graph(n, p, seed=seed)
F = np.array([1-pow(1-p,k) for k in range(l,max_m+1)])
1p = log(1.0 - p)

while v < n:

H
Il

random.random ()
j=0
while j < max_m:
if r < F[j]:
k=]
break
j+=1
else:
k = 1 + floor(log(1.0 - r) / 1lp)
w += k
while w >= v and v < n:
W =V
v += 1
if v < n:
G.add_edge(v, w)
return G

Abbildung 3.7: PreZER

14

3 Erdés-Rényi Graphen in Python

—— gnp_random_graph
fast_gnp_random_graph
—— PreZER

604

50

40 A

304

cpu time in seconds

/

T T T T T T
0.1 0.2 0.3 0.4 0.5 0.6
probability

204

10 4

Abbildung 3.8: Vergleich der durchschnittlichen Laufzeit von gnp_random_graph,
fast_gnp_random_graph und PreZER fiir Graphen mit 10000 Knoten und
6 generierten Graphen pro p

15

4 Spannbdaume generieren

Im vorigen Kapitel haben wir gesehen, wie man zuféllige Graphen generiert. In diesem
Kapitel werden wir 2 Algorithmen kennenlernen, die uns erlauben, einen Spannbaum eines
Graphen zu generieren. Der erste Algorithmus ist der Groundskeeper Algorithmus, welcher
durch einen Random Walk auf einem Graphen einen Spannbaum liefert. Wir werden Bewei-
sen, dass dieser Spannbaum gleichverteilt auf allen Spannbdumen des Graphen ist. Da der
Groundskeeper Algorithmus nicht sehr effizient ist, werden wir im Anschluss einen schnel-
leren Algorithmus kennenlernen, der einen Spannbaum von einem vollstandigen Graphen
liefert. Wir werden mit Hilfe des Beweises iiber den Baum aus dem Groundskeeper Algo-
rithmus zeigen, dass auch der Spannbaum aus dem schnelleren Algorithmus gleichverteilt
auf allen Spannbdumen des vollstdndigen Graphen ist.

4.1 Groundskeeper Algorithmus

Konstruktion des Spannbaums

Sei im folgenden G = (V| F) ein zusammenhéngender einfacher Graph wie in 2.1.1 und
2.1.3 definiert. Mit r, bezeichnen wir den Grad, die Anzahl der Nachbarn, eines Knotens v
aus V. Mit (X;;j > 0) bezeichnen wir einen Random Walk auf dem Graphen G mit einem
zuféllig ausgewahlten Startknoten Xy. Fir einen zufélligen Startknoten v gilt dann

v v ifj =0
T lwfitwe{weViw~ X1} iff >0

wobei jedes w € {w € V : w ~ X;_1} gleich wahrscheinlich ist. Das heifit, dass fiir alle
Knoten in V gilt, dass die Wahrscheinlichkeit, dass ein Knoten v aus V' der erste Knoten
Xo = v ist, 1/|V] ist. Fir einen beliebigen Schritt X; = v mit j > 0 des Random Walks
und eine Kante {v,w} aus F gilt, dass die Wahrscheinlichkeit, dass der néchste Schritt
X1 = w ist, gleich 1/r, ist. Der Random Walk terminiert, wenn alle Knoten von V'
erschlossen wurden. Da G endlich ist, terminiert ein Random Walk mit Wahrscheinlichkeit
1. Eine Implementierung des Random Walks in Python ist in Abbildung 4.1 zu sehen.

Auf Grundlage dieses Random Walks konstruieren wir einen Spannbaum des Graphen
G und gehen dabei folgendermaflien vor. Wir betrachten die verwendeten Kanten eines
Random Walks, also die Menge

{{v,w}eE[3i>0:X;=v A X4 =w}

und entfernen die Kanten, durch die kein neuer Knoten durch den Random Walk erschlossen
wurde. Fiir eine genauere Beschreibung definieren wir den Zeitpunkt, zu dem ein Knoten

16

4 Spannbdume generieren

import random
import networkx as nx

def random_walk(graph, seed=42):

random. seed (seed)

assert nx.is_connected(graph), "Graph nicht zusammenhingend"

#Startknoten X_O

random_node = random.choice(list(graph))

#Liste zum Spetichern der Nodes

randomwalk = [random node]

while set(randomwalk) != set(graph):
nachbarn = list(graph.neighbors(random_node))
nichster_knoten = random.choice(nachbarn)
randomwalk.append(ndchster_knoten)

return(randomwalk)

Abbildung 4.1: Implementierung des Random Walks in Python

das erste Mal entdeckt wurde. Wir bezeichnen diesen Zeitpunkt fiir jeden Knoten v als T,
der folgendermaflen definiert ist:

T, :==min{j > 0: X; = v}

Da der Random Walk mit Wahrscheinlichkeit 1 terminiert, sind die 7; wohldefiniert. Wir
kénnen nun einen Teilgraph von G definieren, mit der Kantenmenge

E = {{Xr,_1, X1, }HveV\ Xo} (4.1)
Wir definieren den Teilgraph
T = (V.E)

Proposition 4.1.0.1. Sei N(G) die Anzahle der Spannbdume ¢t von G. Dann ist

fiir alle Spannbdume ¢ von G.

Den Beweis dieser Proposition werden wir in zwei Schritten fithren. Zunéchst zeigen wir,
dass 7 ein Spannbaum ist in dem wir beweisen, das 7 zusammenhingend und kreisfrei
ist. Im zweiten Schritt und Hauptteil zeigen wir, dass 7 auf der Menge aller Spannbdume
gleichverteilt ist.

17

4 Spannbdume generieren

52 def baum_aus_Randomwalk(randomwalk:1ist) -> nx.Graph:

53 e

54 creates Tree from randomwalk like in the Aldous paper
55 e

56 T = nx.Graph()

57 #liste in reihenfolge der Entdeckung

58 T_geordnete_knoten = list(dict.fromkeys(randomwalk))
59 for node in T_geordnete_knoten[1:]:

60 i = randomwalk.index(node)

61 T.add_edge(randomwalk[i-1] ,node)

62 assert nx.is_tree(T), "T ist kein Baum"

63 return(T)

Abbildung 4.2: Funktion in Python um einen Spannbaum aus einem Random Walk zu
konstruieren

Konstruktion ist zusammenhangend

Um zu zeigen, dass T ein Spannbaum ist, zeigen wir zunéchst, dass 7 zusammenhéngend
ist. Dazu nummerieren wir die Knoten aus V in der Reihenfolge ihrer Entdeckung im
Random Walk (Xj;7 > 0) vermége (vi,...,vy|) = (XTUI,...,XTle) wobei T, < T,
fir i < j. Wir zeigen, dass der Graph, der durch die Knoten Vy = {v1,...,vny} und die
Kantenmenge En = {(X7,-1, X1,)|v € VN \ X0}, N < |V|, definiert ist, zusammenhéngend
ist. Dazu fithren wir einen Induktionsbeweis iiber N.

Induktionsanfang N = 1:

Der Graph Vi = ({v1},0) ist als trivialer Graph zusammenhéngend.
Induktionsvoraussetzung:

Der Graph Gy = ({v1,..., o8}, {(X1,—1, X7,)|v € VN \ X0}) mit N < |V] ist zusam-
menhéngend.

Induktionsschritt N — N + 1:

Der Knoten von dem aus vyy1 entdeckt wurde, ist der Knoten XTUNH,I. Da dieser
Knoten zuvor entdeckt worden sein muss, ist XTUN -1 in V. Da nach der Induktions-
voraussetzung Vy zusammenhéngend ist, existiert ein Pfad zwischen v; und vy. Somit
konnen wir diesen Pfad durch die Kante (XTUN+1_1’ XTvN+1) € Eny erweitern und haben
einen Pfad zwischen v; und vyy1 gefunden. Somit ist also v; mit jedem anderen Knoten
in V41 verbunden, wodurch G4+ zusammenhingend ist.

Wir haben also bewiesen, dass fir N < |V| der Graph Gy zusammenhingend ist.

Dadurch ist insbesondere der Graph G G|y| = zusammenhédngend, was wir zeigen
wollten.

18

4 Spannbdume generieren

Konstruktion ist kreisfrei

Um zu zeigen, dass G ein Spannbaum ist, bleibt noch zu zeigen, dass es in G keine Kreise
gibt. Dazu zeigen wir zunéchst folgende Lemmata:

Lemma 4.1.1. Ein Graph G = (V, E) mit |E| < |V| hat mindestens ein Blatt, also einen
Knoten mit nur einem Nachbarn.

Beweis. Wir nehmen an, ein Graph G = (V, E) mit |E| < |V| habe kein Blatt. Dann sind
alle Knoten von G mindestens vom Grad 2. Summiert man die Grade der Knoten von V'
auf, zdhlt man alle Kanten doppelt, somit ergibt sich:

2B =) r, =2V

veV
Und dadurch

[El = V]
was ein Widerspruch zur Annahme |E| < |V] ist. Also hat jeder Graph G = (V, E) mit
|E| < |V| mindestens ein Blatt. O

Lemma 4.1.2. Ein zusammenhéngender Graph G mit n Knoten hat mindestens n — 1
Kanten.

Beweis. Fiir n < 3 lassen sich alle moglichen Graphen, wie in 4.3 zu sehen, leicht aufzeich-
nen, um die Aussage zu verifizieren.

@

Abbildung 4.3: Alle zusammenhéngenden Graphen mit 3 oder weniger Knoten

Seil also nun n > 4. Um einen Widerspruch zu erzeugen, betrachten wir den Graphen
G mit minimaler Knotenanzahl n, dessen Anzahl der Kanten nicht gréfler als n — 2 ist.
Wir entfernen einen Knoten vom Grad 1, welcher aufgrund von Lemma 4.1.1 existiert, und
dessen zugehorige Kante. Dadurch erhalten wir einen neuen zusammenhéngenden Graphen
G’ mit Knotenanzahl n — 1 und weniger als n — 2 Kanten. Dieser Graph ist zusammenhén-
gend und hat mindestens 2 Kanten weniger als Knoten, wodurch der urspriingliche Graph
G nicht der Graph mit dieser Eigenschaft und minimaler Knotenanzahl gewesen sein kann.
Somit kann dieser Graph G nicht existieren und ein zusammenhédngender Graph G mit n
Knoten hat mindestens n — 1 Kanten. O

Satz 4.1.3. Der durch die Kanten in 4.1 definierte Graph ist kreisfrei.

19

4 Spannbdume generieren

Beweis. Wir nehmen an es gibe in dem durch 4.1 definierten Graphen G = (V, E’) einen
Kreis. Dann kénnen wir eine Kante e aus diesem Kreis entfernen, sodass der G’ = (V, E'\ e)
immer noch zusammenhéingend ist. Allerdings gilt |E’| = |V| — 1 und somit |E' \ e| =
|V| — 2. Wir haben aber in Lemma 4.1.2 gezeigt, dass ein zusammenhéngender Graph mit
Knotenzahl |V| mindestens |V| —1 Kanten haben muss. Das ist ein Widerspruch und somit
ist G kreisfrei.

O

Damit haben wir gezeigt, dass der durch 4.1 definierte Graph 7 ein Spannbaum des origi-
nalen Graph G ist. Jeder Spannbaum von G ist durch diese Konstruktion méglich. Einem
bestimmten Spannbaum ¢ kénnten mehrere verschiedene Random Walks zu Grunde liegen.
FEiner ist aber gerade jener, der durch die Tiefensuche auf dem Baum ¢ bestimmt wird.

Konstruktion ist gleichverteilt

Wir zeigen im Folgenden, dass die durch Random Walks definierten Baume gleichverteilt
sind. Dazu brauchen wir den Begriff eines stationédren stochastischen Prozesses aus 2.2.2.
Fiir uns ist ein Random Walk (X;j > 0) ein stochastischer Prozess wie in 2.2.1 mit dem
Raum €2 aller moglichen Random Walks auf G. Der Zustandsraum Z ist die Menge V der
Knoten von G und T die Indexmenge Nj.

Wir bezeichnen im folgenden die Anzahl der Spannbdume von G mit N(G) und die
Menge aller gewurzelten Spannbdume von G mit S. Ein gewurzelter Spannbaum ist ein
Spannbaum mit einem festen Wurzelknoten. Da es |V| Méglichkeiten gibt, einen Knoten
als Wurzelknoten zu wéhlen, gilt |S| = |V|- N(G). Um zu zeigen, dass die Verteilung der
Spannbédume (ohne Wurzel) uniform ist, also

1 V]
FTEE NG sy
mit einem Spannbaum ¢, betrachten wir zunachst die gewurzelten Spannbdume, die durch
einen Random Walk (Xj;j > 0) definiert sind aber die Konstruktion wie in 4.1 zu einem
spateren Zeitpunkt m im Random Walk startet. Bezeichne mit 7" den Index des ersten
Besuches des Knotens v ab dem Index m, also

T." = min{j > m: X; = v}.
Dann ist

der Spannbaum mit Wurzel X,,, der durch den Random Walk (X, Xy 41, Xpmt2, ...) mit
m > 0 definiert wird. Dadurch erhalten wir eine Folge von gewurzelten Spannbdumen
(Sm)m>0. Im néchsten Schritt betrachten wir einen Random Walk (X;; —oo < j < 00) auf
G, der mit den ganzen Zahlen indexiert ist. Der Random Walk (X; —oco < j < 00) induziert
dann eine ebenfalls iiber die ganzen Zahlen indexierte Folge von gewurzelten Spannbdumen
(Sim; —o0 < m < o0). Wir werden uns eine solche Folge von gewurzelten Spannbédumen in
Riickwartszeit

20

4 Spannbdume generieren

(vasm—175m—27"‘)a (42)

welche bei einem Index m € Z beginnt, genauer ansehen.

Lemma 4.1.4. Sei P € [0,1]"*" die Ubergangsmatrix einer irreduziblen Markov-Kette
(2.2.6) und sei A = [P — I,1] die Matrix P — I mit einer zusitzlichen letzten Spalte mit
nur 1 als Eintrdgen. Dann hat A vollen Rang.

Beweis. Da die Zeilen jeder Ubergangsmatrix P aufsummiert 1 ergeben, gilt P1 = 1 und
somit hat die Gleichung Az = 0 die Lésung (1,0)7. Sollte rang(A) = n nicht gelten,
so miisste es eine weitere nicht triviale Losung (y,a)? geben, die orthogonal zu (1,0)”
(Gram-Schmidt) ist. Also muss gelten

<(1’ O)Tﬂ (y7 a)T> = Z yi = 0. (4.3)

Dadurch kénnen die Eintrége von y nicht alle gleich sein, das sonst) ,y; = n-y1 =0
gelten wiirde, was nur fiir y = 0 gilt. Daraus wiirde aber folgen, dass a = 0 ist, was im
Widerspruch zu (y, a)” # 0 steht.

Wegen A(y, a)T = 0 gilt Py+al =y. Jeder Eintrag von y ist also eine Konvexkombina-
tion der Eintrige von y plus a. Da die Markov-Kette irreduzibel ist, gibt es einen Zustand
k, dessen zugehoriger Eintrag im Vektor y maximal ist und welcher auf dem Ubergangsgra-
phen der Markov-Kette Nachbar von einem Zustand [ist, dessen zugehoriger Eintrag im
Vektor y geringer ist. Wiirde dieses Tupel (k,[) nicht existieren, wéren die Zustdnde mit
maximalen Eintrdgen in y eine Mengen von Zustdnden, die nicht mit anderen Zustdnden
kommunizieren, welche geringere Eintrige in y haben. So wére aber y nicht irreduzibel.
Somit ist pr; # 0 und dadurch y, > >, pi;yi. Da laut Annahme y, = >, priyi + o gelten
muss, ist also a > 0. Analog lisst sich ein Zustand %’ finden, dessen zugehoriger Eintrag im
Vektor y minimal ist und welcher auf dem Ubergangsgraphen der Markov-Kette Nachbar
von einem Zustand [’ ist, dessen zugehoriger Eintrag im Vektor y grofier ist. So erhalten
wir o < 0 und somit einen Widerspruch. Somit kann es keine zweite nicht triviale Losung
von Az = 0 geben, wodurch rang(A) = n gilt. |] O

Korollar 4.1.4.1. dim({m: 7P =7}) < 1.

Beweis. Fiir ein € R" mit) |, w; = 1 und 7 ist Linkseigenvektor von P muss gelten, mA =
(0,1). Aus A = (AT7T)T und rang(A) = rang(AT) folgt dann durch 4.3 dim({zA|x €
R™}) = n, womit die Abbildung = — A injektiv ist. Somit hat wA = (0,1) hochstens
eine Losung und durch skalieren dieser Losung erhalten wir den Raum {Amw: A € R,wA =
(0,1)} = {7 : wP = 7w}, womit die Aussage gezeigt ist. |] O

Definition 4.1.1. | | Sei p(t) die Verteilung der Zustande einer Markov-Kette nach
t Schritten, p(t); bezeichnet die relative Haufigkeit des Auftretens der Zustands i. Somit
gilt klarerweise) . p(t); = 1 fiir jedes t. Bezeichne mit a(t) die lingerfristige Verteilung
der Zusténde.

a(t) = %

(P(0) +---+p(t—-1))

21

4 Spannbdume generieren

Satz 4.1.5 (Fundamentalsatz fiir Markov-Ketten). Fiir eine irreduzible Markov-Kette exis-
tiert eine eindeutige Verteilung 7, welche wP = 7 erfiillt und fiir langerfristige Verteilung
a(t) gilt stets lim;,c a(t) = m

Beweis.

Also gilt [b(t)| < 2 und somit konvergiert b(t) = a(t)P — a(t) gegen 0. Dadurch konver-
giert a(t) gegen eine Verteilung 7 fir die wP = 7 gilt. Diese Verteilung ist durch 4.1.4.1
eindeutig. O

Wir werden zeigen, dass die Folge in 4.2 eine Markov-Kette ist und dass (S,; —0o < m <
00) ein stationérer stochastischer Prozess ist , wodurch wir {iber die stationédre Verteilung
dieser Markov-Kette, die Verteilung aller gewurzelten Spannbdume erhalten.

Lemma 4.1.6. Ein gewurzelter Spannbaum S; aus der Folge 4.2 mit ¢ > m ist vollstandig
durch (S;4+1, X;) bestimmt.

Beweis. Dem gewurzelten Spannbaum S;;1 liegt der Random Walk (X;j > i+ 1) zugrun-
de. Beginnen wir nun den Random Walk bei Xj;, anstelle von X, miissen wir eventuell
eine neue Kante zu unserem Baum hinzufiigen und zwar die Kante (X;, X;11). Falls diese
Kante bereits in S;41 vorhanden war, gilt .S; = S;41, ansonsten ist die Kante, die hinzuge-
fiigt wurde als X; in S;41 entdeckt wurde in S; nicht mehr vorhanden, da ja X; der erste
Knoten war. Der Rest des Baumes bleibt hingegen unveréndert.|] O

Der ausschlaggebende Punkt ist, dass wir die im zweiten Fall iiberfliissige Kante eindeutig
durch S;y1 bestimmen kénnen. Diese Kante ist ndmlich die Letzte, vom eindeutigen Weg
von X;11 nach X;, im Baum S;,1, was folgende Grafik illustrieren soll.

Abbildung 4.4: Beispiel zweier Spannbdume mit Wurzel in rot. Links der Spannbaum S;
und Rechts S;. Die Kante (v3, v1) wurde als letzte Kante vom Weg von X1
nach X; entfernt.

22

4 Spannbdume generieren

Wir haben somit gezeigt, dass die Folge aus 4.2 gedéchtnislos ist. Fassen wir) bzw.
Z aus 2.2.1 als Menge aller Folgen von gewurzelten Spannbdumen bzw. S (die Menge
aller gewurzelter Spannbdume) auf, dann ist eine Familie S™ = (S;)i<;, mit m € Z ein
stochastischer Prozess. Somit ist jede Folge wie in 4.2 eine Markov-Kette.

Ein Random Walk ist ebenfalls eine Markov-Kette, da die Ubergangswahrscheinlichkei-
ten nur vom aktuellen Knoten abhidngen. Da der Graph G zusammenhéngend ist, ist die
Markov-Kette die einen Random Walk beschreibt irreduzibel und somit existiert durch
4.1.5 eine eindeutige stationédre Verteilung.

Lemma 4.1.7. Die stationére Verteilung 7 eines Random Walks auf einem zusammen-
hangenden, endlichen, ungerichteten Graphen G = (V| E) ist proportional zu dem Grad

der Knoten. Genauer: ,
v

m(0) = 5 (4.4)

Beweis. Dazu miissen wir zeigen, dass der Vektor 7 ein Linkseigenvektor zum Eigenwert
1 der Ubergangsmatrix einer Markov-Kette (X;;m < j < 0o) mit m € Z ist. Sei P die
Ubergangsmatrix, mit Eintrigen py, = P(X;41 = w|X; = v) fiir v,w € V, dann soll also
gelten

al'p=nx"

und somit

Y w(©)pow = m(w)

v

fur alle w € V. Durch Einsetzen erhalten wir fur festes w

o Ty _ Ty l _ Tw
Zﬂ-(v)p’vﬂu - Z 2’E‘pv,w - Z 2|E| Y - 2|E| — ﬂ-(w)

v v v~w

und somit die Behauptung. O

Somit ist in einem Random Walk (X;; —oo < j < o) das Auftreten eines bestimmten
Knotens nicht von der Zeit abhéngig und dadurch zu jedem Zeitpunkt gleich wahrscheinlich.
Ein Random Walk indexiert mit den ganzen Zahlen, ist also ein stationérer stochastischer
Prozess. Da ein gewurzelter Spannbaum S,,, m € Z mit Wahrscheinlichkeit 1 von einer
endlichen Folge von Knoten (X, X1, . Xintn) abhéngt, ist ein gewurzelter Spann-
baum zu jedem Zeitpunkt gleich wahrscheinlich und (Sy,; —o0 < m < 00) ein stationérer
stochastischer Prozess.

Um die stationédre Verteilung der Markov-Kette von gewurzelten Spannbdumen in Riick-
wirtszeit wie in 4.2 zu ermitteln, wollen wir die Ubergangsmatrix und deswegen die Uber-
gangswahrscheinlichkeiten

P(S, = u|Sms1 = 1)

flir Baume u und ¢ betrachten, also die Wahrscheinlichkeiten, dass ein gewurzelter Spann-
baum u auftritt bedingt durch den Nachfolger t. Dazu sind die Ubergangswahrscheinlich-
keiten eines Random Walks (X;; —0o < j < 00) in Riickwértszeit von Bedeutung.

23

4 Spannbdume generieren

Lemma 4.1.8. Fiir einen Random Walk (X;; —0co < j < 00), beliebiges m € Z, v,w € V
mit v ~ w gilt

1
P(Xm_l = ’U)‘Xm = ’U) = 7
v

Beweis. Fiir den Beweis nutzen wir, dass fiir beliebiges v € V und einen beliebigen Schritt
m € Z im Random Walk (X;; —oco < j < 00) gilt,
P(X,, =v) =m(v),

mit 7, der stationdren Verteilung des Random Walks aus 4.1.7. Dann erhalten wir nach
Definition der bedingten Wahrscheinlichkeit fiir w ~ v

P(X,,-1= X, =
IP)(‘mel:wp(m:U): (ml L tm U)

P(Xy, =v)
_ 7 (w)P(Xy = 0| X1 = w)
7 (v)
Tw L
2|E| rw
= o
2E]
1
=
und somit die Aussage. O

Bezeichne fiir einen Baum ¢, den Grad seiner Wurzel mit r(¢). Bedingt durch einen ge-
wurzelten Spannbaum S; = v mit ¢ < m der Folge 4.2 von gewurzelten Spannbdumen,
betrachten wir jetzt die Wahrscheinlichkeit fiir einen gewurzelten Spannbaum S;_;. Dem
Baum u liegt der Random Walk (Xj;j > 4) zugrunde. Fiir den Vorgéngerknoten X; 4
kommen dadurch 7(u) Knoten in Frage, wobei durch 4.1.8 jeder Knoten davon gleich wahr-
scheinlich ist. Somit gibt es auch r(u) Baume aus S die fiir S;_; in Frage kommen und die
alle gleich wahrscheinlich sind. Bezeichne die Menge dieser Baume mit D(u). Dann gilt fiir
festes u € S

L fallst € D(u)

]P’(Si_l = t‘SZ = u) = {r(u) (4.5)

0 sonst

Gehen wir in 4.5 allerdings von festem S;_1 =t € S aus, so gibt es in der Markov-Kette
4.2 der gewurzelten Spannbaume, r(t) Nachfolger S; von ¢, fiir die die Gleichung gilt. Die
Menge dieser Biaume bezeichnen wir mit C(t).

Mit 4.5 konnen wir die Ubergangsmatrix der Markov-Kette (Sp., Sm—1, Sm_2,...) fiir
7 < m aufstellen:

P(Si—1 = t1]|S; =t1) P(Si—1 =t2|Si =t1) P(Si—1 = t3|S; = t1)
P(Si_l = tﬂSi = tg)]P’(Sz'_l = tg’Si = tg) ’
P(Si_l = tﬂSZ‘ = tg))

24

4 Spannbdume generieren

Diese Matrix hat aufgrund von

S rOBS =S =) = 3 r(OP(S1 =]S = 1)

tes tec(t)
=3 g
teC(t’)
= r(t)
den Linkseigenvektor (r(t))ics zum Eingenwert 1.] Um die stationdre Wahrschein-

lichkeit der Markov-Kette der gewurzelten Spannbdume zu erhalten, miissen wir diesen
Vektor noch normieren.

dor(t)=N(@)Y o =2N(G)E|

tesS veV

Somit ist der Vektor)

2N(G)|E]
die gesuchte und wegen Satz 4.1.5 eindeutige stationdre Verteilung 7 der Markov-Kette.

Da (Sm; —0o0 < m < 00) ein stationdrer Prozess ist, ist die Verteilung 7 genau der Vektor
der Wahrscheinlichkeiten

(r(t)ies)

(P(Sm = t))tGS
wodurch dann
(@)
2|E[|IN(G)]

fiir einen gewurzelten Spannbaum ¢ gilt. Somit hdngt die Wahrscheinlichkeit des Auftre-
tens eines Spannbaumes nur vom Grad seiner Wurzel hab. Kehren wir nun wieder zu dem
urspriinglichen Spannbaum 77, der durch den Random Walk (X;;j > 0) definiert wird, zu-
riick. Ist die Verteilung des Startknotens X die der stationdren Verteilung 4.4 des Random
Walks iiber die ganzen Zahlen, so konnen wir auch die stationdre Wahrscheinlichkeit des
Spannbaums anwenden. So ist dann

P(Sy, = t)

r(t)
YT = g
fiir einen gewurzelten Baum ¢. Wenn wir diese Wahrscheinlichkeit mit der Bedingung eines
bestimmten Startknotens Xy = w versehen, wobei w € V beliebig ist, dann ist jeder
Spannbaum mit w als Wurzel gleich wahrscheinlich, da diese Baume alle den selben Grad
der Wurzel haben. Da wir jeden Spannbaum von G mit jeder Wurzel w auffassen kénnen,
sind die entstehenden Badume ohne Wurzel gleichverteilt. Ist nun Xg bzw. w uniform, so ist

immer noch jeder Spannbaum gleich wahrscheinlich.
|

25

4 Spannbdume generieren

4.2 schnellerer Algorithmus

Es ist eine schone Vorstellung, dass der Spannbaum der durch einen Random Walk auf
einem Graphen entsteht wirklich gleichverteilt auf der Menge seiner Spannbadume ist. In der
Praxis ist dieser Algorithmus allerdings vor allem nicht praktikabel um schnell Spannbdume
zu generieren, denn dafiir muss der Random Walk erst alle Knoten besuchen, was bei groflen
Graphen sehr lange dauern kann.

In diesem Abschnitt werden wir einen Algorithmus vorstellen, der sehr schnell Spannbéu-
me von vollstdndigen Graphen generieren kann. Wir werden im Beweis die Gleichverteiltheit
auf der Menge aller Spannbdume des, durch den neuen Algorithmus generierten, Spann-
baums auf die Gleichverteilung des Spannbaumes aus dem Groundskeeper Algorithmus
zuriickfithren.

Sei fiir ein n € N\ {0,1} K,, = (V = {v1,...,0.}, E = {61,...,6(;)}) der vollstédndige

Graph mit n Knoten wie in 2.1.4 definiert.
Algorithmus 4.2.1.

(i) Fir 2 <i < n sei U; gleichverteilt und unabhéngig auf der Knotenmenge V.
Fige die Kanten von v; nach vyiy(y; i—1) hinzu.

(ii) Bezeichne die Knoten vy, ..., vy als vr(1), . .. Ux(n) Wobei m € S, eine zufillige (gleich-
verteilte) Permutation ist.

Der Algorithmus beginnt mit einer leeren Kantenmenge. Da in der ersten Schleife mit
i = 2 begonnen wird und somit min(Us, 1) = 1 schon fest steht, werden zunichst Knoten
v1 und v9 durch eine Kante verbunden. In jedem weiteren Schritt ¢ = 3,...,n wird dann
mit Wahrscheinlichkeit 1 — % der Knoten v; mit dem Knoten v;_; verbunden. Fiir alle
anderen Knoten vy, ...,v;—o ist die Wahrscheinlichkeit %, da diese nur ausgewahlt werden
kénnen, wenn U; < ¢ — 1 ist.

Proposition 4.2.0.1. Der durch 4.2.1 konstruierte Baum 7T,, ist gleichverteilt auf der
Menge aller Spannbiume von K,: P(7, =t) = 1/n"2 fiir alle Spannbiume t von K.

Beweis. Die Familie Z = (Z;);>0 sei iid auf der Knotenmenge V. Die Familie (§;)i<j<n
bezeichnet die Indizes der Familie Z, an denen ein Knoten aus V' das erste mal vorkommt.
Das lésst sich definieren als:

§&1=0

4.6
Vi<j<n:§=min{i >0Z; €{Z,...,Z¢ . }} (4.6)

Die Familie (7;)1<j<n seien die Konten von V', in der Reihenfolge, in der ein Knoten als
Zustand von Z das erste mal vorkommt.

™ = 7
| 7 (4.7)
Vlg]gn:ﬂj:Z§j
Die Familie L = (Lg)2<k<n sei die Familie der Knoten der Vorginger der Knoten

(Ze,)2<j<n- (Der erste Knoten, Z¢, = Zp, hat keinen Vorginger) Genauer:

VQSkSn:Lk:Z&c—l

26

4 Spannbdume generieren

30 def algorithm2(graph: nx.Graph, seed: int = 42) -> nx.Graph:

31 number_of_nodes = len(graph)

32 assert len(graph.edges) == number_of_nodes*(number_of_nodes-1)/2,\
33 "graph is not complete"

34 random. seed (seed)

35 u = [random.choice(list(graph)) for _ in range(2, len(graph))]
36 T = nx.Graph()

37 nodes = [str(i) for i in range(len(graph))]

38 T.add_edge (nodes[0] ,nodes[1])

39 for i in range(2,len(graph)):

40 T.add_edge(nodes[i],str(min(int (u[i-2]),i-1)))

41 random. shuffle(nodes)

42 permutation = dict(zip(T.nodes, nodes))

43 T = nx.relabel_nodes(T, permutation)

Abbildung 4.5: Implementierung des Algorithmus 4.2.1 in Python

Wir betrachten den Baum, in dem fiir alle j = 1,...,n — 1 der Knoten ;1 mit dem
Knoten Lj;q durch eine Kante verbunden ist. Der Unterschied ist, dass die Familie Z kein
Random Walk ist, da ein Knoten in der Familie Z mehrmals hintereinander vorkommen
kann. Verwendet man fiir die Konstruktion des Baumes die Familie Z’, in der alle Zustinde
Z; entfernt wurden, die mit Z;_; {ibereinstimmen, entsteht der selbe Graph. Da die Rei-
henfolge der entdeckten Knoten gleich bleibt, dndert das entfernen dieser Z; nichts an der
Familie 7. Es dndert sich nur die Familie €. Diese neue Familie Z’ ist dadurch, dass es keine
aufeinanderfolgenden Zustidnde gibt, ein Random Walk auf dem vollstdndigen Graphen K.
Da wir jedes m; fiir ¢ > 2 mit seinem vorgénger verbinden, entspricht also der Algorithmus
dem Groundskeeper Algorithmus 4.1. Dadurch ist der Baum gleichverteilt auf der Menge
aller Baume von G.

Algorithmus 4.2.2.
(i) fiir alle j =1,...,n — 1 verbinde v;4+1 mit 7 1(L;41).
(ii) benenne die Knoten vy,...,v, in m;, ... 7, um.

Hier bezeichnet die Funktion 7 die durch die 7; in 4.7 definierte Permutation.

V1 UV ... Up

™ T2 ... Tp
Man verifiziert leicht, das 4.2.2 den selben Algorithmus wie der Groundskeeper Algorithmus
beschreibt: Wendet man (ii) auf die in (i) zu verbindenden Knoten an, so verbindet man fiir
alle j =1,...,n — 1 den Knoten vz, , mit dem Knoten v, ,. Um zu beweisen, dass 4.2.2

den gleichen Algorithm wie 4.2.1 beschreibt, vergleichen wir die Wahrscheinlichkeiten. Wir
halten ein beliebiges j > 1 und einen beliebigen Prozess (Z; : i < £;) bis zum Index ¢; fest.

27

4 Spannbdume generieren

Die Wahrscheinlichkeit, dass Zng ein Knoten ist, der nicht in {7,...,7;} vorkommt, ist
1- % Das ist gleichbedeutend mit &j11 = & + 1 und Ljp; = 7; und 7 Y(Ljt1) = vj.
Wird 7j41 nicht direkt nach m; entdeckt, so gibt es ein M > 1 mit {41 = §; + M + 1. Die
Knoten auf dem Abschnitt (Zg,, ..., Z¢,+m = Zg,,, 1) sind unabhéngig voneinander und
gleichverteilt auf der Menge der Knoten zuvor besuchten Knoten {71,...,7;}. Somit ist
fir den Fall {41 = & + M + 1 mit M > 1, L;; gleichverteilt auf der Menge der Knoten
{m1,...,m;} und somit 7= (L;41) gleichverteilt auf der Menge {1,...,j}.
Zusammen ergibt sich fiir die Wahrscheinlichkeiten:

Vie{l,...,j—1}:

_ 1
P(rH(Ljs1) = vil Zey, .., Ze,) =P(Ljsr = mi| Ze,, ..., Ze,) = -

L
P(ﬂ'il(Lj_H) = Uj‘ng .. .,Zg].)]P(Lj+1 = ’/Tj|Z£l, .. .,Zgj)
]:P)(Lj+1 = 7Tj|Z§1, .. .,Zgj A Z§j+1 = Z§j+1)
+P(Lj+1 = Wj‘Z&, .. .,Zgj A Z§j+M+1 = Z£j+1)
J 1 j—1

n n n

Die Wahrscheinlichkeiten stimmen somit mit 4.2.1 {iberein. Die generierten Baume sind
also gleichverteilt auf der Menge aller Spannbdume von K,,.
O

Der Punkt ist, dass wir fiir den Groundskeeper Algorithmus nur einen endlichen Teil
des Random Walks brauchen um den Spannbaum zu konstruieren. Wir bendtigen nur die
Reihenfolge der Entdeckung der Knoten und von welchem Knoten aus ein Knoten entdeckt
wurde. Mit 4.5 konnen wir diese Eckpunkte des Random Walks direkt generieren, ohne
einen ganzen Random Walk durchlaufen zu miissen.

Beispiel 4.2.0.1. Als Beispiel betrachten wir den vollstdndigen Graphen Kj.

¢ |01 1234|567 |8]9(10|11]12
Zi Vg | U1 | V2 | Vg | V1 | V1 | V2 V3 V1 | V1 | U3

T V2 | V1
&i 01
Li V2 | U2

Abbildung 4.6: Beispiel fiir die Familie Z und die daraus konstruierten Familien &, v und
L

28

4 Spannbdume generieren

@v@ =)
@‘@ ()

(a) vollstandiger Graph mit 4 Knoten (b) Spannbaum von Ky durch 4.6

29

5 Blatter von Spannbaumen

In den vorangegangenen Kapiteln, Kapitel 3 und 4, haben wir detailliert dargestellt, wie
man zufillige Graphen und Spannbdume generieren kann. Die Untersuchung von Eigen-
schaften zufélliger Graphen ist von besonderem Interesse, da sie als eine Art Nullhypothese
fiir die Struktur realer Systeme dienen koénnen. Beispielsweise finden wir solche Systeme in
Straflennetzen, sozialen Netzwerken und im Internet. In diesem Kapitel steht die Analyse
der Anzahl von Blattern in zufilligen Spannbdumen im Fokus. Ein Blatt in einem Graphen
ist ein Knoten, der lediglich mit einem einzigen anderen Knoten verbunden ist. Unser Ziel
ist es, ausgehend von einem r-reguldren Graphen, die Wahrscheinlichkeit abzuschétzen,
dass ein bestimmter Knoten ein Blatt ist. Hierzu werden wir den Parameter r nutzen, um
diese Schranken zu bestimmen.

5.1 Oberer Schranke

Proposition 5.1.0.1 (Proposition 5). Bezeichne mit 7 die gleichverteilte Zufallsvariable
auf den Spannbdumen eines zusammenhéngenden r-reguliaren Graphen G = (V, E) mit
r > 3. Sei v ein beliebiger Knoten von G, dann gilt:

-1
P(v ist ein Blatt von T) < exp(—r2
"

)

[, Proposition 5]

Beweis. Sei (Xj;7 > 0) der Random Walk aus 4.1. Sei v € V' beliebig, fest. Sei N(v) wie
in 2.1.1 die Menge der Nachbarn von v. Bezeichne mit «; den Index j von X; des i-ten
Besuchs der Menge N (v).

o] = min{j > O|Xj S N(U)}

5.1
Qi1 = min{j > Oé¢|Xj S N(U)} ()

Sei 7; = (V, E;) der durch den Random Walk X; bis zum index «; induzierte Spannbaum,
also der, der durch den Groundskeeper Algorithmus vom Random Walk (X; j < o) erzeugt
wird. Bezeichne mit deg(v,7;) den Grad vom Knoten v im Graphen 7;. Definiere:

)0 falls deg(v, 7;) =0
" |deg(v,T;) —1 sonst

Bemerkung 5.1.0.1.
0<D;<r—1

da G ein r-reguldrer Graph ist und somit deg(v,7;) < r gilt.

30

5 Blatter von Spannbaumen

Abbildung 5.1: Random Walk auf dem 5-reguldren Graphen mit moglichen Bdumen 77 in
griin und blau

Da im Baum 7; nur ein Knoten aus N(v) namlich a := X,, besucht wurde, kann a nur
entweder von v oder einem Knoten b € V' \ (N (v) U {v}) erreicht worden sein. Im ersten
Fall gilt {v,a} € E; und der Baum 7} besteht nur aus den Knoten V' = {v,a} und der
Kantenmenge E; = {{v,a}}. Im zweiten Fall gilt {b,a} € E;.

{v,a} € By = deg(v,T1) =1= D1 =0
{b,a} € By = deg(v,T1) =0=D; =0
Und somit gilt Dy = 0.
Bemerkung 5.1.0.2.
E; CEiy1 = D; < Dipy (5.2)
wobei Gleichheit bei F; = F;41 gilt.

Sei ¢ > 1 und X =a € N(v). Es gibt 3 Moglichkeiten, wie a erreicht werden kann:

Qi1
1. a wird von v erreicht und {v,a} € E;11 \ E; = Diy1 = D; + 1
2. a wird von v erreicht und {v,a} € E; = D;11 = D;
3. a wird von einem Knoten b € V' \ (N(v) U {v}) erreicht. = D;y; = D;
Somit gilt:

Bemerkung 5.1.0.3.
Diyy € {D;,D; + 1}

31

5 Blatter von Spannbaumen

Definition 5.1.1.
(i) = [{X; € N(v)|7 < o}

I'(«;) ist also die Menge der unterschiedlichen Knoten in N (v), die bis zum Zeitpunkt
besucht wurden.

Bemerkung 5.1.0.4.
I'(a;) € I'(cvit1)

In einem r-reguléren Graphen gilt:
IN(v)]=r

somit
Falls v ein Blatt von 7T ist, dann gilt Vi > 1 : D; = 0 und wegen der Monotonie von 5.2
gilt:

Somit gilt:
Vi >r:P(D, =0)>P(D; =0)
Woraus
P(v ist ein Blatt von 7) < P(D, = 0) (5.3)
folgt.

Lemma 5.1.1.
Vi>1Vi<i<yj:
P(DjZO,D]',1 :0,...,Dj,i:O):IP>(Dj:O,Dj,lz(),...,Dl :0)

Beweis.
7>7: folgt sofort aus

(DjZO,Dj_l :0,...,D1=0)=>(Dj:O,Dj_lzo,...,Dj_i:())

7<”:Sei j > 1und 1 <i < j. Wir nehmen an , dass P(D; =0,D;_1 =0,...,D; =0) <
P(D; =0,D;—1=0,...,D;_; = 0) gilt. Es gilt:
P(D; =0,Dj_1 =0,...,D; =0) <P(D; =0,D;_1 =0,...,D;_; = 0)
&P(D; i 1,...,Dy=0D; =0,...,D;_; = 0O)P(D;,...,D;_; = 0)
P(D; =0,D;_1 =0,...,D;_; = 0)
SP(Dj_i_1,...,Dy=0/D; =0,...,D;_; =0) < 1
sl

Widerspruch! 0

32

5 Blatter von Spannbaumen

Somit gilt:

und dadurch
j—1

P(D; = 0) = [[P(Dis1 = 0|D; = 0) (5.4)
i=1
Wir betrachten nun die Wahrscheinlichkeit, dass D;;1 = 0 gegeben D; = 0. Dazu ist es
leichter die Gegenwahrscheinlichkeit P(D;y; = 1|D; = 0) zu betrachten. In dieser Situa-
tion befindet sich der Random Walk an einem Knoten X,, € N(v) und uns interessiert,
mit welcher Wahrscheinlichkeit der Random Walk im néchsten Schritt v besucht und im
iibernédchsten Schritt einen Knoten besucht, der noch nicht entdeckt wurde. Die Wahr-
scheinlichkeit, dass der Random Walk im nédchsten Schritt v besucht ist % da jeder Knoten
r Nachbarn hat. Die Wahrscheinlichkeit, dass der Random Walk im iiberndchsten Schritt
einen Knoten besucht, der noch nicht entdeckt wurde ist 1 — I'(c;)/r, da bereits I'(a;)
Knoten um v entdeckt wurden. Es gilt also:

1
B(Di1 = 1|Di = 0) = —(1 -

und daher) r
P(Di1 = 0|D; = 0) =1 - (1 ()

<1— (1- P(Tofi)))
H(l— -0)

wobei wir dabei genutzt haben, dass Vi > 1 : I'(o;) < ¢ gilt. Das sieht man leicht, da
nach i besuchen der Menge N (v) maximal 7 verschiedene Knoten aus dieser Menge besucht
wurden. Mit 5.3 folgt:

Mit 5.4, 5.5 folgt fir 2 < j <r:

[y

j—

| A
Q s
»—- »—‘

P(v ist ein Blatt von 7) <

_(0)
<T1(1-a-b)

Fiir den letzten Schritt benutzen wir die Tatsache, dass Vy € R : 1 —y < e ¥ gilt. Sei

33

5 Blatter von Spannbaumen

yi = 1/r(1 —i/r), dann gilt:

r—1 .
P(v ist ein Blatt von T) < H (1 - 1(1 - Z)>

. r T
=1

r—1

=110 -w
=1
r—1

S H e Yi

i=1
r—1
= exp(— Y _ vi)
=1

Wir berechnen nun Z:;ll Yi:

r—1 1r—1 i
NEDNCS)

=1
r—1 1<
= - = 7
2
r r?
_r—1 1r(r—1)
o r2 2
r—1 r—1
oy 2r
r—1
o
Und somit gilt:
-1
P(v ist ein Blatt von 7)) < eXp(_TT)
r

5.2 Untere Schranke

Wie der Graph in Abbildung 5.2 zeigt, kann es Knoten in einem Graphen geben, die nie ein
Blatt in einem Spannbaum sein kénnen. Aus diesem Grund kénnen wir als untere Schranke
fiir P(v ist ein Blatt von 7°) nur 0 verwenden. Statt die Wahrscheinlichkeit fir einen indi-
viduellen Knoten zu betrachten, schatzen wir die durchschnittliche Wahrscheinlichkeiten,
fiir einen Knoten ein Blatt zu sein, ab.

Satz 5.2.1.
ave,cP(v ist ein Blatt von T) > a(r)
mit
r—1 Jj—1
a(r) = r (1 —j/m =T -1 —i/r))
=2 i=1

34

5 Blatter von Spannbaumen

(v)

Abbildung 5.2: 3-regulédrer Graph in dessen Spannbdumen v nie ein Blatt sein kann

Es bezeichnet

1
aveyegP(v ist ein Blatt von 7) = W] Z P(v ist ein Blatt von 7).
veG

Beweis. Wir bezeichnen mit M = min(¢ : D; = 1) den ersten Index i in dem der Knoten v
in dem durch den Random Walk definierten Baum 7; kein Blatt mehr ist.

Bemerkung 5.2.1.1. M ist wohldefiniert, da der Random Walk mit Wahrscheinlichkeit
1 jeden Knoten besucht.

Proposition 5.2.1.1. P(v ist ein Blatt von 7) = P(M = o0)

Beweis. Da fiir den Fall dass v ein Blatt von 7 ist gilt, dass Vi > 1 : D; = 0 und somit
M = min{} = co. O

Mit Dy = deg(v, T) — 1 bezeichnen wir den Grenzwert von D; fiir i — oo, also den Grad
von v im fertigen Spannbaum 7 weniger 1. Wir konnen nun D, ausdriicken als:
oo
Do =) (Djs1 — D)
=1

= Lar<oe) + Y _(Djs1 — Dj)1(p,0)

<

Wir dricken den Erwartungswert fiir den grad von v im fertigen Spannbaum 7 durch D,
und M aus:

E[Doo] = E[1(ar<o0)] + E[D>_(Dj11 = Dj)1(p,0)]
j:

[y

=P(M <) + ZE[(Dj“ — Dj)1(p,>0)] (5.7)
=1

= P(M < o) + 3_E[(Djs1 — D,)JB(D; > 0)

I~T

1

J

5 Blatter von Spannbaumen

Den Erwartungswert E[(D;j;1 — D;)] koénnen wir explizit anschreiben und fir 1 < j <r
abschatzen als:

E[(Djy1 = Dj)] =0-P(Djy1 — Dj =0) +1-P(Dj1 — Dj = 1)
=P(Dj11=D; +1)

1. I()
= — 1 _——
~()
1.
>-(1-=
S1=)
Somit folgt aus 5.7:
r—1 j
E[Daso] > P(M < 00) + Z; ~(1=)P(D; > 0)
iz
Mit Proposition 5.2.1.1 gilt:
r—1 .
: . 1 J
E[Dso] > P(v ist kein Blatt von 7) + Y =(1 — 2)P(D; > 0) (5.8)
r r
j=1
r—1 .
& E[Ds) > 1 P(v ist ein Blatt von T) + Y_ ~(1 — 2)P(D; > 0)
T T
j=1
(5.9)
r—1
& P(vist ein Blatt von T7) > 1~ E[Doc] + Y ~(1 - 2)P(D; > 0) (5.10)
T
j=1
>a(r)

Die Abschétzung fiir a(r) folgt aus 5.6:

P(Dj>0)—1—P(Dj—0)Zl—ﬁ(1—1(1—i))

paley T r
Wir kénnen den Durchschnittlichen Erwartungswert ave,E[D] berechnen:

Lemma 5.2.2.

ave, deg(v,T) = % Z deg(v,T) = %Q(n -1 =2- 2

veT "
Somit folgt aus der Definition von D.:

2
ave,E[Ds] =1 — —

n
Somit kénnen wir bei 5.10 fortfahren und erhalten:

r—1 . J— 3

P 1, 1. i

oP(v ist ein Blatt >1-(1-2)+Y ~a-)(1- 1-2a-1
ave,P(v ist ein Blatt von 7) > (n)+ r('r)< :1< 7"(7“)>>

7

fay

Jj=1

36

5 Blatter von Spannbaumen

5.3 Empirische Verteilung der Blatter

Wahrschinlichket fur einen Knoten ein Blatt zu sein
|G] = 100, |Spannbaume| = 1000

0.7 - —— obere Schranke
N ¥ —— untere Schranke
—— obere Schranke ohne exp

0.6 1

0.5 4

0.4

0.3 -

0.2

Wabhrschinlichkeit ein Blatt zu sein

0.1

0.0 4

Abbildung 5.3: Wahrscheinlichkeit fiir einen Knoten in einem UST ein Blatt zu sein, in
Abhéngigkeit der Regularitit der Graphen. Graph mit 100 Knoten, 1000
getestete UST pro Knoten

In Abbildung 5.3 ist die Wahrscheinlichkeit fiir einen Knoten in einem UST ein Blatt
zu sein in Abhéngigkeit der Regularitdt des Graphen mit 100 Knoten dargestellt. Jeder
der 100 Knoten wurde mit 1000 zufélligen UST getestet, die mit Hilfe des Groundskee-
per Algorithmus generiert wurden. TODO: Referenz auf Groundskeeper Algorithmus Die
Wahrscheinlichkeiten erweisen sich als sehr stabil und liegen in etwas zwischen 0.3 und 0.4.
Man sieht ebenfalls, das die Abschitzungen sehr groflzligig waren, da die Schranken sehr
weit weg liegen.

37

Literaturverzeichnis

[Aigl15]

[A1d90]

[BBOS]

[BHK20]

[Dan19]

[Eis14]

[Gil59)]

[HSSCO8]

[Kle13)]

[MS05]

[NLKB11]

Martin Aigner. Problem und , Lésung, pages 3—16. Springer Fachmedien Wies-
baden, Wiesbaden, 2015.

David J Aldous. The random walk construction of uniform spanning trees and
uniform labelled trees. SIAM Journal on Discrete Mathematics, 3(4):450-465,
1990.

Vladimir Batagelj and Ulrik Brandes. FEfficient generation of large random
networks. Phys. Rev. F, 71:036113, Mar 2005.

Avrim Blum, John Hopcroft, and Ravindran Kannan. Random Walks and Mar-
kov Chains, page 62-108. Cambridge University Press, 2020.

Will Dana. The groundskeeper’s algorithm works. http://www-personal.
umich.edu/~willdana/Electrees,20Notes.pdf, 2019. [Online; accessed 25-
February-2022].

Friedrich Eisenbrand. Randomized algorithms. https://www.epfl.ch/labs/
disopt/wp-content/uploads/2018/09/1ec7.pdf, 2014. [Online; accessed 25-
February-2022].

E. N. Gilbert. Random graphs. The Annals of Mathematical Statistics,
30(4):1141-1144, 1959.

Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network structure,
dynamics, and function using networkx. Technical report, Los Alamos National
Lab.(LANL), Los Alamos, NM (United States), 2008.

Achim Klenke. Wahrscheinlichkeitstheorie. Springer Spektrum, 2013.

David Meintrup and Stefan Schéffler. Stochastik Theorie und Anwendungen.
Springer, 2005.

Sadegh Nobari, Xuesong Lu, Panagiotis Karras, and Stéphane Bressan. Fast
random graph generation. In Proceedings of the 14th international conference
on extending database technology, pages 331-342, 2011.

Nicolas Privault. Understanding markov chains examples and applications.
Springer Singapore, 2018.

Python Documentation: random — Generate pseudo-random numbers. https:
//docs.python.org/3/library/random.html. Accessed: October 11, 2023.

38

http://www-personal.umich.edu/~willdana/Electrees%20Notes.pdf
http://www-personal.umich.edu/~willdana/Electrees%20Notes.pdf
https://www.epfl.ch/labs/disopt/wp-content/uploads/2018/09/lec7.pdf
https://www.epfl.ch/labs/disopt/wp-content/uploads/2018/09/lec7.pdf
https://docs.python.org/3/library/random.html
https://docs.python.org/3/library/random.html

Abbildungsverzeichnis

2.1
2.2

3.1
3.2

3.3
3.4

3.5
3.6

3.7
3.8

4.1
4.2

4.3
4.4

4.5
4.6

5.1
5.2

5.3

Beispiele fiir reguldre Graphen L Lo Lo 3
vollstandiger Graph Kg und Spannbaum davon 4
gnp_random_graph in networkx L 7
schnellerer Algorithmus fiir kleine p um einen random Graph in networkx
ZU GENETIETEI . . . v v v v vt v e e e e e e e e e e e e e e e 9
K4 mit beschrifteten Kanten wie in fast_gnp_random_graph 9
Reihenfolge der Kanten in Algorithmus 3.2 anhand der unteren Dreiecksad-
jazenzmatrix L Lo e e 10
PreLogZER o e 12
Verteilungsfunktionen der geometrischen Verteilung F,(k) = (1 — p)*~! - p
fir p e {0.1,0.2,0.3,0.5,0.75} 13
PreZER o e 14
Vergleich der durchschnittlichen Laufzeit von gnp_random_graph,
fast_gnp_random_graph und PreZER fiir Graphen mit 10000 Knoten
und 6 generierten Graphen prop o .. 15
Implementierung des Random Walks in Python 17
Funktion in Python um einen Spannbaum aus einem Random Walk zu kon-
strujeren Lo L 18
Alle zusammenhéngenden Graphen mit 3 oder weniger Knoten 19
Beispiel zweier Spannbédume mit Wurzel in rot. Links der Spannbaum S,
und Rechts S;. Die Kante (v3,v1) wurde als letzte Kante vom Weg von X1
nach X; entfernt. L 22
Implementierung des Algorithmus 4.2.1 in Python 27
Beispiel fiir die Familie Z und die daraus konstruierten Familien £, w und L 28
Random Walk auf Graphen mit Nachbarmenge 31
3-reguldrer Graph in dessen Spannbaumen ein bestimmter Knoten nie ein
Blatt sein kann e 35
Wahrscheinlichkeit fiir einen Knoten in einem UST ein Blatt zu sein, in

Abhéngigkeit der Regularitdt der Graphen. Graph mit 100 Knoten, 1000
getestete UST pro Knoten o L 37

39

	Einleitung
	Grundlagen
	Graphen
	Statistik

	Erdős-Rényi Graphen in Python
	Spannbäume generieren
	Groundskeeper Algorithmus
	schnellerer Algorithmus

	Blätter von Spannbäumen
	Oberer Schranke
	Untere Schranke
	Empirische Verteilung der Blätter

	Literaturverzeichnis
	Abbildungsverzeichnis

