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1 Einleitung

Graphen und ihre Teilstruktur, die sogenannten Spannbäume, spielen eine fundamentale
Rolle in der Informatik, Optimierung und verschiedenen Anwendungsgebieten davon. Die
Fähigkeit, diese Strukturen zu analysieren, zu verstehen und effizient zu generieren, hat
weitreichende Auswirkungen auf zahlreiche algorithmische Probleme und praxisrelevante
Anwendungen. Diese Bachelorarbeit widmet sich Algorithmen zur zufälligen Generierung
von Graphen und Spannbäumen.

Graphen bieten eine abstrakte Darstellung von Beziehungen und Verbindungen zwischen
Objekten. In zahlreichen Disziplinen, einschließlich der Analyse von sozialen Netzwerken,
Verkehrsplanung, Netzwerkdesign und Optimierung von Prozessen, sind Graphenmodelle
unerlässlich.

Die Generierung von zufälligen Graphen und Spannbäumen ist ein interessantes For-
schungsgebiet, da sie tiefe Einblicke in die Struktur und das Verhalten von Graphen er-
möglicht. Zufallsgraphen dienen als Modelle für reale Netzwerke, in denen die genauen
Verbindungen zwischen den Elementen nicht im Voraus bekannt sind. Die Entwicklung
effizienter Algorithmen zur zufälligen Generierung von Graphen und Spannbäumen hat
direkte Auswirkungen auf die Bewertung von Algorithmen in der durchschnittlichen Fall-
komplexität und ermöglicht eine realistischere Simulation von Netzwerken.

Da Graphen eine große Rolle in Bereich Data Science spielen, und Python eine sehr
beliebte Programmiersprache in diesem Feld ist, wird in dieser Arbeit die Implementierung
von Algorithmen in Python gezeigt. Die Bibliothek networkx hat sich als die de facto
Standardbibliothek für Graphen in Python etabliert. Mit ihr lassen sich sehr leicht zufällige
Graphen generieren und analysieren. In dieser Arbeit werden die Algorithmen die networkx
verwendet, um zufällige Erdős-Rényi Graphen zu generieren, analysiert und verglichen. In
ihrer Arbeit Fast Random Graph Generation haben Nobari et al. [NLKB11] verschiedene
Algorithmen zur zufälligen Generierung von ebendiesen Graphen in C++ implementiert und
verglichen. In dieser Arbeit werden 2 dieser Algorithmen in Python implementiert und mit
denen von networkx verglichen.

Von zufälligen Graphen gehen wir zu zufälligen Spannbäumen von Graphen über. Dazu
beschreiben wir den Groundskeeper Algorithmus und zeigen, dass der daraus resultierende
Spannbaum gleichverteilt ist. Eine Implementierung in Python wird auch hier wieder ge-
zeigt. Für reguläre Graphen wird ein Algorithmus vorgestellt, der wesentlich effizienter ist
als der Groundskeeper Algorithmus. Die wichtigste Quelle für dieses Kapitel ist die Arbeit
The random walk construction of uniform spanning trees and uniform labelled trees von D.
J. Aldous [Ald90].

Im letzten Kapitel wird die Wahrscheinlichkeit betrachtet, dass ein Knoten in einem zu-
fälligen Spannbaum eines Graphen ein Blatt ist. Dafür werden wir diese Wahrscheinlichkeit
nach oben sowie nach unten abschätzen. Die Schranken stammen ebenfalls aus der Arbeit
von Aldous. Zum Schluss wird die Schranke empirisch getestet, es wird der Groundskeeper
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1 Einleitung

Algorithmus verwendet, um zufällige Spannbäume zu generieren und der Anteil der Bäume
berechnet, in denen ein bestimmter Knoten ein Blatt ist. Die Schranken erweisen sich als
äußert großzügig.
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2 Grundlagen
Einige grundlegende Definitionen und Konzepte aus der Graphentheorie und der Statistik
werden in diesem Kapitel vorgestellt.

2.1 Graphen
Definition 2.1.1 (einfacher Graph). [Aig15] Ein einfacher Graph G ist ein Tupel (V,E)
mit einer einer endlichen Menge V von Knoten und einer endlichen Menge E von Kanten.
E ⊆ {{v, w}|v, w ∈ V, v 6= w}. Zwei Knoten v, w werden benachbart genannt, wenn sie durch
eine Kante verbunden sind: ∃e ∈ E : e = {v, w}. Wir schreiben in diesem Fall auch v ∼ w.
Die Menge der benachbarten Knoten von v wird als N(v) bezeichnet. Die Anzahl der
Knoten in N(v) wird als Grad von v bezeichnet. Einen Graphen G′ = (V ′, E′) nennen wir
Teilgraph von G = (V,E), wenn V ′ ⊆ V und E′ ⊆ E gilt.

Wir werden nur mit einfachen Graphen arbeiten weswegen wir statt von einem einfachen
Graphen nur von einem Graphen sprechen werden.
Definition 2.1.2 (regulärer Graph). Ein Graph G heißt regulär falls gilt:

∀v ∈ V : |N(v)| = k

also alle Knoten den gleichen Grad haben. Man nennt einen Graphen k-regulär, wenn jeder
Knoten Grad k hat.
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(c) 6-regulärer Graph mit 8 Kno-
ten

Abbildung 2.1: Beispiele für reguläre Graphen

Definition 2.1.3 (zusammenhängender Graph). Ein Graph G = (V,E) heißt zusammen-
hängend, wenn gilt:

∀v, w ∈ V : ∃v1, . . . , vn ∈ V : v1 = v, vn = w ∧ ∀i ∈ {1, . . . , n− 1} : {vi, vi+1} ∈ E

Es gibt zwischen jedem Knotenpaar einen Pfad.
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2 Grundlagen

Definition 2.1.4 (vollständiger Graph). Ein Graph G heißt vollständig, wenn gilt:

∀v, w ∈ V : {v, w} ∈ E

also jeder Knoten mit jedem anderen Knoten verbunden ist.

Definition 2.1.5 (Baum). Ein Baum ist ein Graph T , in dem es keine Folge v1, . . . , vn
von Knoten gibt, sodass vi und vi+1 für i = 1, . . . , n− 1 benachbart sind und vn = v1.

Definition 2.1.6 (Spannbaum). Ein Teilgraph T = (VT , ET ) eines Graphen G = (V,E)
heißt Spannbaum, wenn T ein Baum ist und VT = V gilt.

v1

v2
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v4

v5

v6

(a) vollständiger Graph mit 6 Knoten

v1

v2

v3

v4

v5

v6

(b) Spannbaum von 2.2a

Abbildung 2.2: vollständiger Graph K6 und Spannbaum davon

2.2 Statistik
Definition 2.2.1 (stochastischer Prozess). [MS05] Sei (Ω,F ,P) ein Wahrscheinlichkeits-
raum und (Z,Z) Messraum und T eine Indexmenge. Dann heißt eine Familie X = (Xt)t∈T
messbarer Abbildungen

Xt : Ω→ Z, t ∈ T

stochastischer Prozess (mit Zustandsraum Z).

Definition 2.2.2 (stationärer stochastischer Prozess). [Kle13] Ein stochastischer Prozess
(Xt)t∈T mit der Indexmenge T heißt stationär, wenn die Verteilung von (Xs+t)t∈T nicht
von der Verschiebung s ∈ T abhängt, also wenn gilt

PX((Xs+t)t∈T ) = PX((Xt)t∈T )

für alle s ∈ T

Definition 2.2.3 (Markov-Kette). [Pri18] Ein stochastischer Prozess (Xt)t∈N0 der nur
Werte aus einem höchstens abzählbaren Zustandsraum Z annimmt, wird Markov-Kette
genannt, wenn gilt:

P(xt+1 = zt+1|xt = zt, xt−1 = zt−1, . . . , x0 = j0)

= P(xt+1 = zt+1|xt = zt)

4



2 Grundlagen

für alle t ∈ N0 und alle (z0, . . . , zt+1) ∈ Zt+2. Diese Eigenschaft nennt man auch Gedächt-
nislosigkeit. Die Größen

pz,v(t) = P(xt+1 = v|xt = z)

werden Übergangswahrscheinlichkeiten genannt. Sind diese nicht von t abhängig, so spricht
man von stationären Übergangswahrscheinlichkeiten und einer homogenen Markov-Kette.
Die Matrix P (t) mit Einträgen pz,v(t) mit z, v ∈ V ist dann die Übergangsmatrix der
Markov-Kette. Da wir nur mit homogenen Markov-Ketten zu tun haben, werden wir P für
die Übergangsmatrix schreiben.

Definition 2.2.4 (stationäre Verteilung). [MS05] Sei (Xt)t∈T eine Markov-Kette mit In-
dexmenge T , Zustandsraum Z und Übergangsmatrix P . Eine Verteilung π heißt stationär,
falls für alle v ∈ Z gilt: ∑

z∈Z
π(z)pz,v = π(v) (2.1)

Fasst man π als Zeilenvektor auf, so kann man 2.1 auch in der Form

πP = π

beschreiben.

Definition 2.2.5 (erreichbar, kommunizierend). [MS05] Sei (Xt)t∈N0 eine Markov-Kette,
mit Zustandsraum Z, Übergangsmatrix P und zwei Zuständen i, j ∈ Z. Der Zustand j
heißt von i aus erreichbar, falls es einen Pfad von i nach j gibt. Das heißt,

∃ n ≥ 1 : PX(Xt+n = j|Xt = i) > 0 t ∈ N0.

Ist i auch von j aus erreichbar, so heißen i und j kommunizierend.

Definition 2.2.6 (irreduzibel). [MS05] Ist C ⊂ Z eine Teilmenge des Zustandsraums Z
einer Markov-Kette und kommunizieren alle i, j ∈ C miteinander, so heißt C irreduzibel.
Ist Z irreduzibel, so heißt die Markov-Kette irreduzibel.
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3 Erdős-Rényi Graphen in Python

In diesem Kapitel steht die Erzeugung von Erdős-Rényi Graphen im Mittelpunkt, wobei
vier unterschiedliche Algorithmen untersucht werden. Die Python-Bibliothek networkx,
welche die de-facto Standardbibliothek für das Erstellen, Manipulieren und Analysie-
ren von Graphen in Python ist, beinhaltet die Algorithmen gnp_random_graph und
fast_gnp_random_graph, welche näher beschreiben werden. In den Paper von Batagelj
und Brandes [BB05], welches auch in networkx referenziert wird, werden diese und wei-
tere Algorithmen zu Generierung von Graphen vorgestellt und verglichen. Zwei weitere
Algorithmen, die in diesem Paper vorgestellt werden, sind PreLogZER und PreZER, wel-
che in diesem Kapitel ebenfalls beschrieben werden. Zum Schluss werden die Algorithmen
verglichen und die Ergebnisse diskutiert. [HSSC08]

gnp_random_graph

Die Funktion gnp_random_graph aus dem Modul networkx.generators.random_graphs
mit den Parametern n, p und seed generiert einen Graphen mit n Knoten und einer Wahr-
scheinlichkeit p, dass eine Kante zwischen zwei Knoten existiert. Leicht vereinfacht, arbeitet
die Funktion gnp_random_graph wie in Abbildung 3.1 dargestellt. Die Funktion geht alle
Kanten des Graphen durch und entscheidet für jede Kante einzeln, ob sie im generierten
Graphen existiert oder nicht. Dabei wird für jede Kante eine Zufallszahl zwischen 0 und
1 generiert. Ist diese Zufallszahl kleiner als p, so wird die Kante hinzugefügt, wenn nicht,
existiert die Kante im generierten Graphen nicht. Die Anzahl der Schleifendurchläufe ist
also abhängig von der Anzahl der Kanten in einem vollständigem Graphen mit n Knoten.
Dies ist

(
n
2

)
= n(n−1)

2 . Der Aufwand dieser Funktion ist somit O(n2). [HSSC08][Gil59]

fast_gnp_random_graph

Betrachtet man die Verteilung der Anzahl an Kanten in dem durch gnp_random_graph
generierten Graphen, bemerkt man, das es sich hierbei um eine Binomialverteilung handelt.
Wir bezeichnen mit E die Menge der Kanten in dem generierten Graphen, dann gilt:

∀0 ≤ k ≤
(
n

2

)
: P(|E| = k) =

((n
2

)
k

)
pk(1− p)(

n
2
)−k

Nach dem Erwartungswert der Binomialverteilung gilt:

E(|E|) =
(n
2
)∑

k=0

p = p

(
n

2

)
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3 Erdős-Rényi Graphen in Python

1 import networkx as nx
2 import itertools
3 import random
4

5 def gnp_random_graph(n: int, p, seed=None) -> nx.Graph:
6 """
7 creates a random graph with n nodes and a probability p
8 """
9 random.seed(seed)

10 edges = itertools.combinations(range(n), 2)
11

12 G = nx.Graph()
13 G.add_nodes_from(range(n))
14 for e in edges:
15 if random.random() < p:
16 G.add_edge(*e)
17 return G

Abbildung 3.1: gnp_random_graph in networkx

Dieser Wert ist also die erwartete Anzahl an Schleifendurchläufen, in denen wir ei-
ne Kante hinzufügen. Um die Anzahl der Schleifendurchläufe zu verringern, wird in
fast_gnp_random_graph nicht für jede Kante eine Zufallszahl generiert, die über deren
Existenz entscheidet, sondern die Zufallszahl entscheidet in wie vielen Schleifendurchläufen
die nächste Kante hinzugefügt wird. Dazu betrachten wir für k ≥ 1 die Wahrscheinlichkeit,
mit der die nächste Kante erst wieder nach k − 1 Schleifendurchläufen hinzugefügt wird.
Dies ist eine einfache, geometrische Verteilung mit Parameter p.

∀0 ≤ k : P(nächste Kante in k Schleifendurchläufen) = (1− p)k−1 · p

Da wir weiterhin nur aus dem Interval [0, 1) samplen wollen, müssen wir das Interval [0, 1)
auf die Wartezeiten k abbilden. Dazu verwenden wir die Funktion:

I(k) :=

k∑
i=1

(1− p)k−1 · p = 1− (1− p)k

Wir bilden r ← [0, 1) wie folgt auf k ≥ 1 ab:

κ : [0, 1)→ N
r 7→ κ(r) := min{k ∈ N | r < I(k)}

(3.1)

Es ist zu zeigen, dass κ wohldefiniert und surjektiv ist.
Surjektivität: Sei k ∈ N beliebig, dann gilt:

P(κ(r) = k) = P(I(k − 1) ≤ r < I(k))

= (1− p)k−1 · p

7



3 Erdős-Rényi Graphen in Python

Somit ist κ surjektiv.
Wohldefiniertheit: Für die Wohldefiniertheit ist zu zeigen: ∀r ∈ [0, 1) : ∃!k ∈ N : κ(r) = k.
Für die Existenz reicht es zu zeigen, dass limk→∞ I(k) = 1.

lim
k→∞

I(k) =
∞∑
k=1

(1− p)(k−1) · p

= p ·
∞∑
k=0

(1− p)k

geometische Reihe
= p · 1

1− (1− p)

= 1

Die Eindeutigkeit folgt aus der Monotonie von I. Wir müssen außerdem nachrechnen, dass
κ tatsächlich r auf N nach der geometrischen Verteilung abbildet. Sei k ∈ N beliebig, dann
gilt:

P
r←[0,1)

(κ(r) = k) = P
r←[0,1)

(I(k − 1) ≤ r < I(k)) = 1− (1− p)k − (1− (1− p)k−1)

= (1− p)k−1 · p

Wir können k auch explizit durch r ausdrücken. Sei dazu r ∈ [0, 1) beliebig, dann gilt wegen
3.1:

κ(r)− 1 ≤ r < κ(r)∑κ(r)−1
i=1 (1− p)i−1 · p ≤ r <

∑κ(r)
i=1 (1− p)i−1 · p

1− (1− p)κ(r)−1 ≤ r < 1− (1− p)κ(r)

(1− p)κ(r)−1 ≥ 1− r > (1− p)κ(r)

κ(r)− 1 ≤ log(1− r)/ log(1− p) < κ(r)

Somit gilt:

κ(r) =

⌈
log(1− r)

log(1− p)

⌉
was mit 1+ int(math.log(1-r)/math.log(1-p)) in Python implementiert werden kann
und in Abbildung 3.2 dargestellt ist. Durch die zwei Schleifen, die insgesamt einmal die
Knoten und die Kanten durchgehen, ist der Algorithmus linear in der Anzahl der Knoten
und Kanten, also O(n+m). [BB05]

Der Algorithmus geht in lexikografischer Ordnung die Kanten des vollständigen Graphen
durch. Anders betrachtet, geht der Algorithmus die untere Dreiecksmatrix Reihe für Reihe
durch. Es werden int(lr/lp) Kanten übersprungen und die nächste Kante hinzugefügt.
Als Beispiel generieren wir einen Graphen mit 4 Knoten. Sei die Kantenwahrscheinlichkeit
p = 0.5 und die Knotenmenge V = {v1, v2, v3, v4}. Dadurch ergibt sich für Zeile 12 in
Algorithmus 3.2: lp = log(0.5). Dann sind die Kanten in Lexikografischer Ordnung:

E = {(v1, v0), (v2, v0), (v2, v1), (v3, v0), (v3, v1), (v3, v2)}
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3 Erdős-Rényi Graphen in Python

4 def fast_gnp_random_graph(n: int,p, seed=42) -> nx.Graph:
5 """
6 :param n: number of nodes
7 """
8 random.seed(seed)
9 G = nx.empty_graph(n)

10 if p <= 0 or p >= 1:
11 return nx.gnp_random_graph(n, p, seed=seed)
12 lp = log(1.0 - p)
13 v = 1
14 w = -1
15 while v < n:
16 lr = log(1.0 - random.random())
17 k = 1 + int(lr / lp)
18 w = w + k
19 while w >= v and v < n:
20 w = w - v
21 v = v + 1
22 if v < n:
23 G.add_edge(v, w)
24 return G

Abbildung 3.2: schnellerer Algorithmus für kleine p um einen random Graph in networkx
zu generieren

v3 v1

v2 v0

e10

e20

e31

e32 e30 e21

Abbildung 3.3: K4 mit beschrifteten Kanten wie in fast_gnp_random_graph

Die Werte der Zufallsvariablen r im folgenden Beispiel wurden mit random.random() ge-
neriert.

• Initialisiere v = 1 und w = −1

• r ← 0.084⇒ k = 1 +
⌊
log(0.916)
log(0.5)

⌋
= 1⇒ w = 0⇒ E = {e10}

• r ← 0.51⇒ k = 1 +
⌊
log(0.49)
log(0.5)

⌋
= 2⇒ w = 2⇒ w = 1 ∧ v = 2⇒ E = {e10, e21}
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3 Erdős-Rényi Graphen in Python

e00

e10 e11

e20 e21 e22

e30 e31 e32 e33

Abbildung 3.4: Reihenfolge der Kanten in Algorithmus 3.2 anhand der unteren Dreiecks-
adjazenzmatrix

• r ← 0.864⇒ k = 1+
⌊
log(0.136)
log(0.5)

⌋
= 3⇒ w = 4⇒ w = 2∧ v = 3⇒ E = {e10, e21, e32}

• Das Programm terminiert, da nach nächster Iteration w > 2 wäre und so w ≥ v(= 2)
gelten würde wodurch v erhöht wird, weswegen dann v ≥ n = 3 gilt, was die äußere
while-Schleife terminieren lässt.

PreLogZER

Eine weitere Möglichkeit, die Laufzeit von fast_gnp_random_graph für gewisse Umstände
zu verringern, kann durch das Berechnen der Logarithmen der Zufallszahlen im Voraus
geschehen. Das ist von Vorteil, wenn die Anzahl an Schleifendurchläufen größer ist, als die
Anzahl der verschiedenen Zufallszahlen, die generiert werden. Pythons random Modul gene-
riert Zufallszahlen mit gleichem Abstand und einer Präzision von 53 bit. [pyt] Das bedeutet
auch, dass die Funktion random.random() 253 − 1 verschiedene Zufallszahlen im Halbof-
fenen Intervall [0, 1) generieren kann. Für die Anwendung der random.random() Funktion
in den Implementierungen gnp_random_graph 3.1 und fast_gnp_random_graph 3.2 heißt
das, dass diese nur für eine Wahrscheinlichkeit p bis zu einer Präzision von 253 sinnvoll
sind. Um das einzusehen, betrachten wir die Zahl p1 = 0.05954861408025609, welche nicht
durch die Funktion random.random() generiert werden kann, da sie kein Vielfaches von
2−53 ist. Somit gilt für p1 und p2 = 536366232364542 · 2−53, das nächst größere Vielfache
von 2−53:

@r ∈ random.random() : p1 ≤ r < p2

Dadurch werden die Implementierungen für p1, p2 und gleichen Seed auch immer die glei-
chen Graphen liefern.

Wenn wir die Auswahl der Möglichen Werte des Parameter p ∈ (0, 1) einschränken, kön-
nen wir auch die Genauigkeit der Zufallszahl r einschränken und so ab einer gewissen Anzahl
von Knoten n die Anzahl der Aufrufe der Logarithmusfunktion nach oben beschränken. In
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3 Erdős-Rényi Graphen in Python

der Implementierung fast_gnp_random_graph 3.2 ist die erwartete Anzahl an Aufrufen
der Logarithmusfunktion p · n(n−1)2 . In Abhängigkeit, der Anzahl der Knoten n, der Wahr-
scheinlichkeit p und der Anzahl der möglichen Zufallszahlen maxrand werden somit unter
folgender Bedingung in der Implementierung von PreLogZER 3.5 weniger Logarithmusfunk-
tionen aufgerufen als in fast_gnp_random_graph:

p · n(n− 1)

2
> maxrand

⇔ n >
1

2
+

√
1

4
+ 2 · maxrand

p
∈ O

((
maxrand

p

) 1
2

)
Unter der Annahme, dass das Lesen eines Wertes aus einer Liste mit den zuvor berechneten
Logarithmen der Zufallszahlen r, schneller ist, als das berechnen des Logarithmus einer
Zufallszahl, können wir so die Laufzeit verringern.

PreZER

Im vorherigen Algorithmus haben wir sichergestellt, dass jeder Logarithmus nur maximal
ein Mal berechnet wird. Da die Berechnung des Logarithmus lediglich dazu dient, Ab-
stufungen der Verteilungsfunktion zu errechnen, können wir den Mehraufwand durch die
Berechnung des Logarithmus ganz umgehen, in dem wir die Abstufungen im Voraus be-
rechnen. Die Abstufungen sind für verschiedene p in 3.6 dargestellt. Für große p ist die
Verteilungsfunktion schon für kleine k nah an 1, was bedeutet, dass die Wahrscheinlichkeit
in fast_gnp_random_graph ein großes k zu samplen, klein ist. Natürlich können wir nicht
alle Abstufungen im Voraus berechnen, da es unendlich viele gibt. Wir können aber, bis zu
einem gewissen, von uns festgelegtem max_k, alle Funktionswerte Fp(k) berechnen und so
Fp(max_k) · 100% aller möglichen Fälle und Zufallszahlen r ∈ [0, 1) abdecken, für die wir
dann keinen Logarithmus log(1-r) mehr berechnen müssen. Die Wahl von max_k ist dabei
die entscheidende Frage. Das hängt von der Verbesserung der Laufzeit, die die Berechnung
der Abstufungen mit sich bringt ab.

Vergleich der Algorithmen

Der Vergleich der Beschriebenen Algorithmen verlief nicht wie erwartet, da sich die Laufzeit
der Algorithmen in Python nicht wie in [NLKB11] verhält. In [NLKB11, Nobari et. al.]
wurden die Laufzeiten der Algorithmen anhand von Graphen mit einer Knotenanzahl von
10000 gemessen. Die Algorithmen wurden in C++ implementiert und die durchschnittliche
Laufzeit anhand von 10 erstellten Graphen gemessen.

Zunächst viel auf, dass Implementierung von PreLogZER sich nicht mit den anderen Al-
gorithmen vergleichen lässt, da durch die Einschränkung der Domain der Zufallsvariablen
r nicht die hoch optimierte random.random() Funktion verwendet werden kann. Stattdes-
sen wurde random.randint() verwendet. Dadurch ist die Laufzeit von PreLogZER um ein
vielfaches langsamer als die der anderen Algorithmen.

Für die anderen 3 Algorithmen wurde die Laufzeit für Graphen mit 10000 Knoten ge-
messen, wobei für jede Kantenwahrscheinlichkeit p = 0.1, ...0.6 6 Graphen erzeugt wurden
und deren durchschnittliche Laufzeit genommen wurde.
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3 Erdős-Rényi Graphen in Python

1 import networkx as nx
2 from math import log
3 import random
4

5 def PreLogZER(n: int,
6 p: float,
7 randmax: int = 65536,
8 seed=None) -> nx.Graph:
9 """

10 :param n: number of nodes
11

12 """
13 random.seed(seed)
14 lr = []
15 for i in range(randmax):
16 lr.append(log((i+1)/randmax))
17 G = nx.empty_graph(n)
18 if p <= 0 or p >= 1:
19 return nx.gnp_random_graph(n, p, seed=seed)
20 lp = log(1.0 - p)
21 v = 1
22 w = -1
23 while v < n:
24 r = random.randint(0, randmax-1)
25 w += 1 + int(lr[r] / lp)
26 while w >= v and v < n:
27 w = w - v
28 v = v + 1
29 if v < n:
30 G.add_edge(v, w)
31 return G

Abbildung 3.5: PreLogZER

Es stellt sich heraus, dass die Vorausberechnung der Abstufungen keinen Geschwindig-
keitsvorteil im Vergleich zu fast_gnp_random_graph und gnp_random_graph bringt. Im
Gegenteil, der Graph 3.8 zeigt, dass die Laufzeit besonders für große p steigt. Es scheint
so, als würde das ersetzen des Logarithmus durch einen Lookup-Table in Python nicht
schneller sein. Recht gibt uns die networkx Library, die zum generieren von Erdős–Rényi
Graphen nur die Algorithmen 3.1 und 3.2 verwendet, ersten für große p und zweiten für
dünne Graphen.

In 3.8 kann man erkennen, dass bis zu einer Kantenwahrscheinlichkeit von ungefähr
p = 0, 4 der Algorithmus fast_gnp_random_graph 3.2 schneller ist und danach gegen-
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3 Erdős-Rényi Graphen in Python

Abbildung 3.6: Verteilungsfunktionen der geometrischen Verteilung Fp(k) = (1 − p)k−1 · p
für p ∈ {0.1, 0.2, 0.3, 0.5, 0.75}

über gnp_random_graph 3.1 an Laufzeit verliert. Das liegt an der geringeren Anzahl an
Schleifendurchläufen aber dem größeren Aufwand durch die Berechnung des Logarithmus,
welche sich erst bei großen p bemerkbar macht. Für beide scheint die Laufzeit linear in der
Kantenwahrscheinlichkeit zu sein.
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3 Erdős-Rényi Graphen in Python

1 import networkx as nx
2 from math import log,pow,floor
3 import random
4 from time import process_time
5 import numpy as np
6 MAX_M = 9
7 def PreZER(n: int, p, max_m: int = MAX_M, seed = 42) -> nx.Graph:
8 """
9 :param n: number of nodes

10 :param p: probability of edge creation
11 :param max_m: number of precomputed breakpoints of the comulative \
12 distribution
13 """
14 random.seed(seed)
15 G = nx.empty_graph(n)
16 if p <= 0 or p >= 1:
17 return nx.gnp_random_graph(n, p, seed=seed)
18 F = np.array([1-pow(1-p,k) for k in range(1,max_m+1)])
19 lp = log(1.0 - p)
20 v = 1
21 w = -1
22 while v < n:
23 r = random.random()
24 j = 0
25 while j < max_m:
26 if r < F[j]:
27 k = j
28 break
29 j += 1
30 else:
31 k = 1 + floor(log(1.0 - r) / lp)
32 w += k
33 while w >= v and v < n:
34 w -= v
35 v += 1
36 if v < n:
37 G.add_edge(v, w)
38 return G

Abbildung 3.7: PreZER

14



3 Erdős-Rényi Graphen in Python

Abbildung 3.8: Vergleich der durchschnittlichen Laufzeit von gnp_random_graph,
fast_gnp_random_graph und PreZER für Graphen mit 10000 Knoten und
6 generierten Graphen pro p
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4 Spannbäume generieren

Im vorigen Kapitel haben wir gesehen, wie man zufällige Graphen generiert. In diesem
Kapitel werden wir 2 Algorithmen kennenlernen, die uns erlauben, einen Spannbaum eines
Graphen zu generieren. Der erste Algorithmus ist der Groundskeeper Algorithmus, welcher
durch einen Random Walk auf einem Graphen einen Spannbaum liefert. Wir werden Bewei-
sen, dass dieser Spannbaum gleichverteilt auf allen Spannbäumen des Graphen ist. Da der
Groundskeeper Algorithmus nicht sehr effizient ist, werden wir im Anschluss einen schnel-
leren Algorithmus kennenlernen, der einen Spannbaum von einem vollständigen Graphen
liefert. Wir werden mit Hilfe des Beweises über den Baum aus dem Groundskeeper Algo-
rithmus zeigen, dass auch der Spannbaum aus dem schnelleren Algorithmus gleichverteilt
auf allen Spannbäumen des vollständigen Graphen ist.

4.1 Groundskeeper Algorithmus
Konstruktion des Spannbaums
Sei im folgenden G = (V,E) ein zusammenhängender einfacher Graph wie in 2.1.1 und
2.1.3 definiert. Mit rv bezeichnen wir den Grad, die Anzahl der Nachbarn, eines Knotens v
aus V . Mit (Xj ; j ≥ 0) bezeichnen wir einen Random Walk auf dem Graphen G mit einem
zufällig ausgewählten Startknoten X0. Für einen zufälligen Startknoten v gilt dann

Xj =

{
v if j = 0

w für w ∈ {w ∈ V : w ∼ Xj−1} ifj > 0

wobei jedes w ∈ {w ∈ V : w ∼ Xj−1} gleich wahrscheinlich ist. Das heißt, dass für alle
Knoten in V gilt, dass die Wahrscheinlichkeit, dass ein Knoten v aus V der erste Knoten
X0 = v ist, 1/|V | ist. Für einen beliebigen Schritt Xj = v mit j ≥ 0 des Random Walks
und eine Kante {v, w} aus E gilt, dass die Wahrscheinlichkeit, dass der nächste Schritt
Xj+1 = w ist, gleich 1/rv ist. Der Random Walk terminiert, wenn alle Knoten von V
erschlossen wurden. Da G endlich ist, terminiert ein Random Walk mit Wahrscheinlichkeit
1. Eine Implementierung des Random Walks in Python ist in Abbildung 4.1 zu sehen.

Auf Grundlage dieses Random Walks konstruieren wir einen Spannbaum des Graphen
G und gehen dabei folgendermaßen vor. Wir betrachten die verwendeten Kanten eines
Random Walks, also die Menge{

{v, w} ∈ E | ∃ i ≥ 0 : Xi = v ∧ Xi+1 = w
}

und entfernen die Kanten, durch die kein neuer Knoten durch den Random Walk erschlossen
wurde. Für eine genauere Beschreibung definieren wir den Zeitpunkt, zu dem ein Knoten

16



4 Spannbäume generieren

import random
import networkx as nx

def random_walk(graph, seed=42):
random.seed(seed)
assert nx.is_connected(graph), "Graph nicht zusammenhängend"
#Startknoten X_0
random_node = random.choice(list(graph))
#Liste zum Speichern der Nodes
randomwalk = [random_node]
while set(randomwalk) != set(graph):

nachbarn = list(graph.neighbors(random_node))
nächster_knoten = random.choice(nachbarn)
randomwalk.append(nächster_knoten)

return(randomwalk)

Abbildung 4.1: Implementierung des Random Walks in Python

das erste Mal entdeckt wurde. Wir bezeichnen diesen Zeitpunkt für jeden Knoten v als Tv,
der folgendermaßen definiert ist:

Tv := min{j ≥ 0 : Xj = v}

Da der Random Walk mit Wahrscheinlichkeit 1 terminiert, sind die Tv wohldefiniert. Wir
können nun einen Teilgraph von G definieren, mit der Kantenmenge

E′ :=
{
{XTv−1, XTv}|v ∈ V \X0

}
(4.1)

Wir definieren den Teilgraph
T := (V,E′)

Proposition 4.1.0.1. Sei N(G) die Anzahle der Spannbäume t von G. Dann ist

P(T = t) =
1

N(G)

für alle Spannbäume t von G.

Den Beweis dieser Proposition werden wir in zwei Schritten führen. Zunächst zeigen wir,
dass T ein Spannbaum ist in dem wir beweisen, das T zusammenhängend und kreisfrei
ist. Im zweiten Schritt und Hauptteil zeigen wir, dass T auf der Menge aller Spannbäume
gleichverteilt ist.
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4 Spannbäume generieren

52 def baum_aus_Randomwalk(randomwalk:list) -> nx.Graph:
53 """
54 creates Tree from randomwalk like in the Aldous paper
55 """
56 T = nx.Graph()
57 #liste in reihenfolge der Entdeckung
58 T_geordnete_knoten = list(dict.fromkeys(randomwalk))
59 for node in T_geordnete_knoten[1:]:
60 i = randomwalk.index(node)
61 T.add_edge(randomwalk[i-1],node)
62 assert nx.is_tree(T), "T ist kein Baum"
63 return(T)

Abbildung 4.2: Funktion in Python um einen Spannbaum aus einem Random Walk zu
konstruieren

Konstruktion ist zusammenhängend

Um zu zeigen, dass T ein Spannbaum ist, zeigen wir zunächst, dass T zusammenhängend
ist. Dazu nummerieren wir die Knoten aus V in der Reihenfolge ihrer Entdeckung im
Random Walk (Xj ; j ≥ 0) vermöge (v1, . . . , v|V |) := (XTv1

, . . . , XTv|V |
) wobei Tvi < Tvj

für i < j. Wir zeigen, dass der Graph, der durch die Knoten VN = {v1, . . . , vN} und die
Kantenmenge EN = {(XTv−1, XTv)|v ∈ VN \X0}, N ≤ |V |, definiert ist, zusammenhängend
ist. Dazu führen wir einen Induktionsbeweis über N .

Induktionsanfang N = 1:
Der Graph V1 = ({v1}, ∅) ist als trivialer Graph zusammenhängend.

Induktionsvoraussetzung:
Der Graph GN = ({v1, . . . , vN}, {(XTv−1, XTv)|v ∈ VN \ X0}) mit N < |V | ist zusam-

menhängend.
Induktionsschritt N → N + 1:

Der Knoten von dem aus vN+1 entdeckt wurde, ist der Knoten XTvN+1
−1. Da dieser

Knoten zuvor entdeckt worden sein muss, ist XTvN+1
−1 in VN . Da nach der Induktions-

voraussetzung VN zusammenhängend ist, existiert ein Pfad zwischen v1 und vN . Somit
können wir diesen Pfad durch die Kante (XTvN+1

−1, XTvN+1
) ∈ EN+1 erweitern und haben

einen Pfad zwischen v1 und vN+1 gefunden. Somit ist also v1 mit jedem anderen Knoten
in VN+1 verbunden, wodurch GN+1 zusammenhängend ist.

Wir haben also bewiesen, dass für N ≤ |V | der Graph GN zusammenhängend ist.
Dadurch ist insbesondere der Graph G = G|V | = zusammenhängend, was wir zeigen
wollten.
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4 Spannbäume generieren

Konstruktion ist kreisfrei

Um zu zeigen, dass G ein Spannbaum ist, bleibt noch zu zeigen, dass es in G keine Kreise
gibt. Dazu zeigen wir zunächst folgende Lemmata:

Lemma 4.1.1. Ein Graph G = (V,E) mit |E| < |V | hat mindestens ein Blatt, also einen
Knoten mit nur einem Nachbarn.

Beweis. Wir nehmen an, ein Graph G = (V,E) mit |E| < |V | habe kein Blatt. Dann sind
alle Knoten von G mindestens vom Grad 2. Summiert man die Grade der Knoten von V
auf, zählt man alle Kanten doppelt, somit ergibt sich:

2|E| =
∑
v∈V

rv ≥ 2|V |.

Und dadurch

|E| ≥ |V |

was ein Widerspruch zur Annahme |E| < |V | ist. Also hat jeder Graph G = (V,E) mit
|E| < |V | mindestens ein Blatt.

Lemma 4.1.2. Ein zusammenhängender Graph G mit n Knoten hat mindestens n − 1
Kanten.

Beweis. Für n ≤ 3 lassen sich alle möglichen Graphen, wie in 4.3 zu sehen, leicht aufzeich-
nen, um die Aussage zu verifizieren.

v1

v1

v2

v2

v1

v3

v1

v2

v3

Abbildung 4.3: Alle zusammenhängenden Graphen mit 3 oder weniger Knoten

Seil also nun n ≥ 4. Um einen Widerspruch zu erzeugen, betrachten wir den Graphen
G mit minimaler Knotenanzahl n, dessen Anzahl der Kanten nicht größer als n − 2 ist.
Wir entfernen einen Knoten vom Grad 1, welcher aufgrund von Lemma 4.1.1 existiert, und
dessen zugehörige Kante. Dadurch erhalten wir einen neuen zusammenhängenden Graphen
G′ mit Knotenanzahl n− 1 und weniger als n− 2 Kanten. Dieser Graph ist zusammenhän-
gend und hat mindestens 2 Kanten weniger als Knoten, wodurch der ursprüngliche Graph
G nicht der Graph mit dieser Eigenschaft und minimaler Knotenanzahl gewesen sein kann.
Somit kann dieser Graph G nicht existieren und ein zusammenhängender Graph G mit n
Knoten hat mindestens n− 1 Kanten.

Satz 4.1.3. Der durch die Kanten in 4.1 definierte Graph ist kreisfrei.
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4 Spannbäume generieren

Beweis. Wir nehmen an es gäbe in dem durch 4.1 definierten Graphen G = (V,E′) einen
Kreis. Dann können wir eine Kante e aus diesem Kreis entfernen, sodass der G′ = (V,E′\e)
immer noch zusammenhängend ist. Allerdings gilt |E′| = |V | − 1 und somit |E′ \ e| =
|V | − 2. Wir haben aber in Lemma 4.1.2 gezeigt, dass ein zusammenhängender Graph mit
Knotenzahl |V | mindestens |V |−1 Kanten haben muss. Das ist ein Widerspruch und somit
ist G kreisfrei.

Damit haben wir gezeigt, dass der durch 4.1 definierte Graph T ein Spannbaum des origi-
nalen Graph G ist. Jeder Spannbaum von G ist durch diese Konstruktion möglich. Einem
bestimmten Spannbaum t könnten mehrere verschiedene Random Walks zu Grunde liegen.
Einer ist aber gerade jener, der durch die Tiefensuche auf dem Baum t bestimmt wird.

Konstruktion ist gleichverteilt

Wir zeigen im Folgenden, dass die durch Random Walks definierten Bäume gleichverteilt
sind. Dazu brauchen wir den Begriff eines stationären stochastischen Prozesses aus 2.2.2.
Für uns ist ein Random Walk (Xj ; j ≥ 0) ein stochastischer Prozess wie in 2.2.1 mit dem
Raum Ω aller möglichen Random Walks auf G. Der Zustandsraum Z ist die Menge V der
Knoten von G und T die Indexmenge N0.

Wir bezeichnen im folgenden die Anzahl der Spannbäume von G mit N(G) und die
Menge aller gewurzelten Spannbäume von G mit S. Ein gewurzelter Spannbaum ist ein
Spannbaum mit einem festen Wurzelknoten. Da es |V | Möglichkeiten gibt, einen Knoten
als Wurzelknoten zu wählen, gilt |S| = |V | · N(G). Um zu zeigen, dass die Verteilung der
Spannbäume (ohne Wurzel) uniform ist, also

P(T = t) =
1

N(G)
=
|V |
|S|

,

mit einem Spannbaum t, betrachten wir zunächst die gewurzelten Spannbäume, die durch
einen Random Walk (Xj ; j ≥ 0) definiert sind aber die Konstruktion wie in 4.1 zu einem
späteren Zeitpunkt m im Random Walk startet. Bezeichne mit Tm

v den Index des ersten
Besuches des Knotens v ab dem Index m, also

Tm
v = min{j ≥ m : Xj = v}.

Dann ist

Sm = (V, {(XTm
v −1, (XTm

v )|v ∈ V \Xm}) ∈ S

der Spannbaum mit Wurzel Xm, der durch den Random Walk (Xm, Xm+1, Xm+2, . . . ) mit
m ≥ 0 definiert wird. Dadurch erhalten wir eine Folge von gewurzelten Spannbäumen
(Sm)m≥0. Im nächsten Schritt betrachten wir einen Random Walk (Xj ;−∞ < j <∞) auf
G, der mit den ganzen Zahlen indexiert ist. Der Random Walk (Xj ;−∞ < j <∞) induziert
dann eine ebenfalls über die ganzen Zahlen indexierte Folge von gewurzelten Spannbäumen
(Sm;−∞ < m < ∞). Wir werden uns eine solche Folge von gewurzelten Spannbäumen in
Rückwärtszeit
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4 Spannbäume generieren

(Sm, Sm−1, Sm−2, . . . ), (4.2)

welche bei einem Index m ∈ Z beginnt, genauer ansehen.

Lemma 4.1.4. Sei P ∈ [0, 1]n×n die Übergangsmatrix einer irreduziblen Markov-Kette
(2.2.6) und sei A = [P − I,1] die Matrix P − I mit einer zusätzlichen letzten Spalte mit
nur 1 als Einträgen. Dann hat A vollen Rang.

Beweis. Da die Zeilen jeder Übergangsmatrix P aufsummiert 1 ergeben, gilt P1 = 1 und
somit hat die Gleichung Ax = 0 die Lösung (1, 0)T . Sollte rang(A) = n nicht gelten,
so müsste es eine weitere nicht triviale Lösung (y, α)T geben, die orthogonal zu (1, 0)T

(Gram-Schmidt) ist. Also muss gelten

〈(1, 0)T , (y, α)T 〉 =
∑
i

yi = 0. (4.3)

Dadurch können die Einträge von y nicht alle gleich sein, das sonst
∑

i yi = n · y1 = 0
gelten würde, was nur für y = 0 gilt. Daraus würde aber folgen, dass α = 0 ist, was im
Widerspruch zu (y, α)T 6= 0 steht.

Wegen A(y, α)T = 0 gilt Py+α1 = y. Jeder Eintrag von y ist also eine Konvexkombina-
tion der Einträge von y plus α. Da die Markov-Kette irreduzibel ist, gibt es einen Zustand
k, dessen zugehöriger Eintrag im Vektor y maximal ist und welcher auf dem Übergangsgra-
phen der Markov-Kette Nachbar von einem Zustand l ist, dessen zugehöriger Eintrag im
Vektor y geringer ist. Würde dieses Tupel (k, l) nicht existieren, wären die Zustände mit
maximalen Einträgen in y eine Mengen von Zuständen, die nicht mit anderen Zuständen
kommunizieren, welche geringere Einträge in y haben. So wäre aber y nicht irreduzibel.
Somit ist pkl 6= 0 und dadurch yk >

∑
i pkiyi. Da laut Annahme yk =

∑
i pkiyi + α gelten

muss, ist also α > 0. Analog lässt sich ein Zustand k′ finden, dessen zugehöriger Eintrag im
Vektor y minimal ist und welcher auf dem Übergangsgraphen der Markov-Kette Nachbar
von einem Zustand l′ ist, dessen zugehöriger Eintrag im Vektor y größer ist. So erhalten
wir α < 0 und somit einen Widerspruch. Somit kann es keine zweite nicht triviale Lösung
von Ax = 0 geben, wodurch rang(A) = n gilt. [BHK20]

Korollar 4.1.4.1. dim({π : πP = π}) ≤ 1.

Beweis. Für ein π ∈ Rn mit
∑

i πi = 1 und π ist Linkseigenvektor von P muss gelten, πA =
(0, 1). Aus πA = (ATπT )T und rang(A) = rang(AT ) folgt dann durch 4.3 dim({xA|x ∈
Rn}) = n, womit die Abbildung x 7→ xA injektiv ist. Somit hat πA = (0, 1) höchstens
eine Lösung und durch skalieren dieser Lösung erhalten wir den Raum {λπ : λ ∈ R,πA =
(0, 1)} = {π : πP = π}, womit die Aussage gezeigt ist. [Eis14]

Definition 4.1.1. [BHK20] Sei p(t) die Verteilung der Zustände einer Markov-Kette nach
t Schritten, p(t)i bezeichnet die relative Häufigkeit des Auftretens der Zustands i. Somit
gilt klarerweise

∑
i p(t)i = 1 für jedes t. Bezeichne mit a(t) die längerfristige Verteilung

der Zustände.
a(t) :=

1

t
(p(0) + · · ·+ p(t− 1))
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Satz 4.1.5 (Fundamentalsatz für Markov-Ketten). Für eine irreduzible Markov-Kette exis-
tiert eine eindeutige Verteilung π, welche πP = π erfüllt und für längerfristige Verteilung
a(t) gilt stets limt→∞ a(t) = π

Beweis.

b(t) = a(t)P − a(t)

=
1

t
(p(1) + · · ·+ p(t))− 1

t
(p(0) + · · ·+ p(t− 1))

=
1

t
(p(t)− p(0))

Also gilt |b(t)| ≤ 2
t und somit konvergiert b(t) = a(t)P − a(t) gegen 0. Dadurch konver-

giert a(t) gegen eine Verteilung π für die πP = π gilt. Diese Verteilung ist durch 4.1.4.1
eindeutig.

Wir werden zeigen, dass die Folge in 4.2 eine Markov-Kette ist und dass (Sm;−∞ < m <
∞) ein stationärer stochastischer Prozess ist , wodurch wir über die stationäre Verteilung
dieser Markov-Kette, die Verteilung aller gewurzelten Spannbäume erhalten.

Lemma 4.1.6. Ein gewurzelter Spannbaum Si aus der Folge 4.2 mit i > m ist vollständig
durch (Si+1, Xi) bestimmt.

Beweis. Dem gewurzelten Spannbaum Si+1 liegt der Random Walk (Xj ; j ≥ i+1) zugrun-
de. Beginnen wir nun den Random Walk bei Xi, anstelle von Xi+1, müssen wir eventuell
eine neue Kante zu unserem Baum hinzufügen und zwar die Kante (Xi, Xi+1). Falls diese
Kante bereits in Si+1 vorhanden war, gilt Si = Si+1, ansonsten ist die Kante, die hinzuge-
fügt wurde als Xi in Si+1 entdeckt wurde in Si nicht mehr vorhanden, da ja Xi der erste
Knoten war. Der Rest des Baumes bleibt hingegen unverändert.[Dan19]

Der ausschlaggebende Punkt ist, dass wir die im zweiten Fall überflüssige Kante eindeutig
durch Sl+1 bestimmen können. Diese Kante ist nämlich die Letzte, vom eindeutigen Weg
von Xi+1 nach Xi, im Baum Si+1, was folgende Grafik illustrieren soll.

v1 v2

v3 v4

v5

Xi+1

Xi

v1 v2

v3 v4

v5

Xi+1

Xi

Abbildung 4.4: Beispiel zweier Spannbäume mit Wurzel in rot. Links der Spannbaum Si+1

und Rechts Si. Die Kante (v3, v1) wurde als letzte Kante vom Weg von Xi+1

nach Xi entfernt.
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4 Spannbäume generieren

Wir haben somit gezeigt, dass die Folge aus 4.2 gedächtnislos ist. Fassen wir Ω bzw.
Z aus 2.2.1 als Menge aller Folgen von gewurzelten Spannbäumen bzw. S (die Menge
aller gewurzelter Spannbäume) auf, dann ist eine Familie Sm = (Si)i≤m mit m ∈ Z ein
stochastischer Prozess. Somit ist jede Folge wie in 4.2 eine Markov-Kette.

Ein Random Walk ist ebenfalls eine Markov-Kette, da die Übergangswahrscheinlichkei-
ten nur vom aktuellen Knoten abhängen. Da der Graph G zusammenhängend ist, ist die
Markov-Kette die einen Random Walk beschreibt irreduzibel und somit existiert durch
4.1.5 eine eindeutige stationäre Verteilung.

Lemma 4.1.7. Die stationäre Verteilung π eines Random Walks auf einem zusammen-
hängenden, endlichen, ungerichteten Graphen G = (V,E) ist proportional zu dem Grad
der Knoten. Genauer:

π(v) =
rv
2|E|

(4.4)

Beweis. Dazu müssen wir zeigen, dass der Vektor π ein Linkseigenvektor zum Eigenwert
1 der Übergangsmatrix einer Markov-Kette (Xj ;m ≤ j < ∞) mit m ∈ Z ist. Sei P die
Übergangsmatrix, mit Einträgen pv,w = P(Xj+1 = w|Xj = v) für v, w ∈ V , dann soll also
gelten

πTP = πT

und somit ∑
v

π(v)pv,w = π(w)

für alle w ∈ V . Durch Einsetzen erhalten wir für festes w∑
v

π(v)pv,w =
∑
v

rv
2|E|

pv,w =
∑
v∼w

rv
2|E|

1

rv
=

rw
2|E|

= π(w)

und somit die Behauptung.

Somit ist in einem Random Walk (Xj ;−∞ < j < ∞) das Auftreten eines bestimmten
Knotens nicht von der Zeit abhängig und dadurch zu jedem Zeitpunkt gleich wahrscheinlich.
Ein Random Walk indexiert mit den ganzen Zahlen, ist also ein stationärer stochastischer
Prozess. Da ein gewurzelter Spannbaum Sm, m ∈ Z mit Wahrscheinlichkeit 1 von einer
endlichen Folge von Knoten (Xm, Xm+1, . . . Xm+n) abhängt, ist ein gewurzelter Spann-
baum zu jedem Zeitpunkt gleich wahrscheinlich und (Sm;−∞ < m < ∞) ein stationärer
stochastischer Prozess.

Um die stationäre Verteilung der Markov-Kette von gewurzelten Spannbäumen in Rück-
wärtszeit wie in 4.2 zu ermitteln, wollen wir die Übergangsmatrix und deswegen die Über-
gangswahrscheinlichkeiten

P(Sm = u|Sm+1 = t)

für Bäume u und t betrachten, also die Wahrscheinlichkeiten, dass ein gewurzelter Spann-
baum u auftritt bedingt durch den Nachfolger t. Dazu sind die Übergangswahrscheinlich-
keiten eines Random Walks (Xj ;−∞ < j <∞) in Rückwärtszeit von Bedeutung.
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Lemma 4.1.8. Für einen Random Walk (Xj ;−∞ < j < ∞), beliebiges m ∈ Z, v, w ∈ V
mit v ∼ w gilt

P(Xm−1 = w|Xm = v) =
1

rv
Beweis. Für den Beweis nutzen wir, dass für beliebiges v ∈ V und einen beliebigen Schritt
m ∈ Z im Random Walk (Xj ;−∞ < j <∞) gilt,

P(Xm = v) = π(v),

mit π, der stationären Verteilung des Random Walks aus 4.1.7. Dann erhalten wir nach
Definition der bedingten Wahrscheinlichkeit für w ∼ v

P(Xm−1 = w|Xm = v) =
P(Xm−1 = w,Xm = v)

P(Xm = v)

=
π(w)P(Xm = v|Xm−1 = w)

π(v)

=

rw
2|E|

1
rw

rv
2|E|

=
1

rv

und somit die Aussage.

Bezeichne für einen Baum t, den Grad seiner Wurzel mit r(t). Bedingt durch einen ge-
wurzelten Spannbaum Si = u mit i ≤ m der Folge 4.2 von gewurzelten Spannbäumen,
betrachten wir jetzt die Wahrscheinlichkeit für einen gewurzelten Spannbaum Si−1. Dem
Baum u liegt der Random Walk (Xj ; j ≥ i) zugrunde. Für den Vorgängerknoten Xi−1
kommen dadurch r(u) Knoten in Frage, wobei durch 4.1.8 jeder Knoten davon gleich wahr-
scheinlich ist. Somit gibt es auch r(u) Bäume aus S die für Si−1 in Frage kommen und die
alle gleich wahrscheinlich sind. Bezeichne die Menge dieser Bäume mit D(u). Dann gilt für
festes u ∈ S

P(Si−1 = t|Si = u) =

{
1

r(u) falls t ∈ D(u)
0 sonst

(4.5)

Gehen wir in 4.5 allerdings von festem Si−1 = t ∈ S aus, so gibt es in der Markov-Kette
4.2 der gewurzelten Spannbäume, r(t) Nachfolger Si von t, für die die Gleichung gilt. Die
Menge dieser Bäume bezeichnen wir mit C(t).

Mit 4.5 können wir die Übergangsmatrix der Markov-Kette (Sm, Sm−1, Sm−2, . . .) für
i ≤ m aufstellen:

P =


P(Si−1 = t1|Si = t1) P(Si−1 = t2|Si = t1) P(Si−1 = t3|Si = t1) . . .

P(Si−1 = t1|Si = t2) P(Si−1 = t2|Si = t2)
. . .

P(Si−1 = t1|Si = t3)
. . .

...


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Diese Matrix hat aufgrund von

∑
t∈S

r(t)P(Si−1 = t′|Si = t) =
∑

t∈C(t′)

r(t)P(Si−1 = t′|Si = t)

=
∑

t∈C(t′)

r(t)
1

r(t)

= r(t′)

den Linkseigenvektor (r(t))t∈S zum Eingenwert 1.[Ald90] Um die stationäre Wahrschein-
lichkeit der Markov-Kette der gewurzelten Spannbäume zu erhalten, müssen wir diesen
Vektor noch normieren. ∑

t∈S
r(t) = N(G)

∑
v∈V

rv = 2N(G)|E|

Somit ist der Vektor
1

2N(G)|E|
(r(t)t∈S)

die gesuchte und wegen Satz 4.1.5 eindeutige stationäre Verteilung π der Markov-Kette.
Da (Sm;−∞ < m <∞) ein stationärer Prozess ist, ist die Verteilung π genau der Vektor

der Wahrscheinlichkeiten

(P(Sm = t))t∈S

wodurch dann
P(Sm = t) =

r(t)

2|E||N(G)|
für einen gewurzelten Spannbaum t gilt. Somit hängt die Wahrscheinlichkeit des Auftre-
tens eines Spannbaumes nur vom Grad seiner Wurzel hab. Kehren wir nun wieder zu dem
ursprünglichen Spannbaum T , der durch den Random Walk (Xj ; j ≥ 0) definiert wird, zu-
rück. Ist die Verteilung des Startknotens X0 die der stationären Verteilung 4.4 des Random
Walks über die ganzen Zahlen, so können wir auch die stationäre Wahrscheinlichkeit des
Spannbaums anwenden. So ist dann

P(T = t) =
r(t)

2|E||N(G)|

für einen gewurzelten Baum t. Wenn wir diese Wahrscheinlichkeit mit der Bedingung eines
bestimmten Startknotens X0 = w versehen, wobei w ∈ V beliebig ist, dann ist jeder
Spannbaum mit w als Wurzel gleich wahrscheinlich, da diese Bäume alle den selben Grad
der Wurzel haben. Da wir jeden Spannbaum von G mit jeder Wurzel w auffassen können,
sind die entstehenden Bäume ohne Wurzel gleichverteilt. Ist nun X0 bzw. w uniform, so ist
immer noch jeder Spannbaum gleich wahrscheinlich.

�
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4.2 schnellerer Algorithmus
Es ist eine schöne Vorstellung, dass der Spannbaum der durch einen Random Walk auf
einem Graphen entsteht wirklich gleichverteilt auf der Menge seiner Spannbäume ist. In der
Praxis ist dieser Algorithmus allerdings vor allem nicht praktikabel um schnell Spannbäume
zu generieren, denn dafür muss der Random Walk erst alle Knoten besuchen, was bei großen
Graphen sehr lange dauern kann.

In diesem Abschnitt werden wir einen Algorithmus vorstellen, der sehr schnell Spannbäu-
me von vollständigen Graphen generieren kann. Wir werden im Beweis die Gleichverteiltheit
auf der Menge aller Spannbäume des, durch den neuen Algorithmus generierten, Spann-
baums auf die Gleichverteilung des Spannbaumes aus dem Groundskeeper Algorithmus
zurückführen.

Sei für ein n ∈ N \ {0, 1} Kn = (V = {v1, . . . , vn}, E = {e1, . . . , e(n
2
)}) der vollständige

Graph mit n Knoten wie in 2.1.4 definiert.

Algorithmus 4.2.1.

(i) Für 2 ≤ i ≤ n sei Ui gleichverteilt und unabhängig auf der Knotenmenge V .
Füge die Kanten von vi nach vmin(Ui,i−1) hinzu.

(ii) Bezeichne die Knoten v1, . . . , vn als vπ(1), . . . vπ(n) wobei π ∈ Sn eine zufällige (gleich-
verteilte) Permutation ist.

Der Algorithmus beginnt mit einer leeren Kantenmenge. Da in der ersten Schleife mit
i = 2 begonnen wird und somit min(U2, 1) = 1 schon fest steht, werden zunächst Knoten
v1 und v2 durch eine Kante verbunden. In jedem weiteren Schritt i = 3, . . . , n wird dann
mit Wahrscheinlichkeit 1 − i−2

n der Knoten vi mit dem Knoten vi−1 verbunden. Für alle
anderen Knoten v1, . . . , vi−2 ist die Wahrscheinlichkeit 1

n , da diese nur ausgewählt werden
können, wenn Ui < i− 1 ist.

Proposition 4.2.0.1. Der durch 4.2.1 konstruierte Baum Tn ist gleichverteilt auf der
Menge aller Spannbäume von Kn: P (Tn = t) = 1/nn−2 für alle Spannbäume t von Kn.

Beweis. Die Familie Z = (Zi)i≥0 sei iid auf der Knotenmenge V . Die Familie (ξj)1≤j≤n
bezeichnet die Indizes der Familie Z, an denen ein Knoten aus V das erste mal vorkommt.
Das lässt sich definieren als:

ξ1 = 0

∀1 ≤ j ≤ n : ξj = min{i > 0|Zi 6∈ {Z0, . . . , Zξj−1
}}

(4.6)

Die Familie (πj)1≤j≤n seien die Konten von V , in der Reihenfolge, in der ein Knoten als
Zustand von Z das erste mal vorkommt.

π1 = Z0

∀1 ≤ j ≤ n : πj = Zξj

(4.7)

Die Familie L := (Lk)2≤k≤n sei die Familie der Knoten der Vorgänger der Knoten
(Zξj )2≤j≤n. (Der erste Knoten, Zξ1 = Z0, hat keinen Vorgänger) Genauer:

∀2 ≤ k ≤ n : Lk = Zξk−1
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30 def algorithm2(graph: nx.Graph, seed: int = 42) -> nx.Graph:
31 number_of_nodes = len(graph)
32 assert len(graph.edges) == number_of_nodes*(number_of_nodes-1)/2,\
33 "graph is not complete"
34 random.seed(seed)
35 u = [random.choice(list(graph)) for _ in range(2, len(graph))]
36 T = nx.Graph()
37 nodes = [str(i) for i in range(len(graph))]
38 T.add_edge(nodes[0],nodes[1])
39 for i in range(2,len(graph)):
40 T.add_edge(nodes[i],str(min(int(u[i-2]),i-1)))
41 random.shuffle(nodes)
42 permutation = dict(zip(T.nodes, nodes))
43 T = nx.relabel_nodes(T, permutation)

Abbildung 4.5: Implementierung des Algorithmus 4.2.1 in Python

Wir betrachten den Baum, in dem für alle j = 1, . . . , n − 1 der Knoten πj+1 mit dem
Knoten Lj+1 durch eine Kante verbunden ist. Der Unterschied ist, dass die Familie Z kein
Random Walk ist, da ein Knoten in der Familie Z mehrmals hintereinander vorkommen
kann. Verwendet man für die Konstruktion des Baumes die Familie Z′, in der alle Zustände
Zi entfernt wurden, die mit Zi−1 übereinstimmen, entsteht der selbe Graph. Da die Rei-
henfolge der entdeckten Knoten gleich bleibt, ändert das entfernen dieser Zi nichts an der
Familie π. Es ändert sich nur die Familie ξ. Diese neue Familie Z′ ist dadurch, dass es keine
aufeinanderfolgenden Zustände gibt, ein Random Walk auf dem vollständigen Graphen Kn.
Da wir jedes πi für i ≥ 2 mit seinem vorgänger verbinden, entspricht also der Algorithmus
dem Groundskeeper Algorithmus 4.1. Dadurch ist der Baum gleichverteilt auf der Menge
aller Bäume von G.

Algorithmus 4.2.2.

(i) für alle j = 1, . . . , n− 1 verbinde vj+1 mit π−1(Lj+1).

(ii) benenne die Knoten v1, . . . , vn in πi, . . . πn um.

Hier bezeichnet die Funktion π die durch die πi in 4.7 definierte Permutation.(
v1 v2 . . . vn
π1 π2 . . . πn

)
Man verifiziert leicht, das 4.2.2 den selben Algorithmus wie der Groundskeeper Algorithmus
beschreibt: Wendet man (ii) auf die in (i) zu verbindenden Knoten an, so verbindet man für
alle j = 1, . . . , n− 1 den Knoten vπj+1 mit dem Knoten vLj+1 . Um zu beweisen, dass 4.2.2
den gleichen Algorithm wie 4.2.1 beschreibt, vergleichen wir die Wahrscheinlichkeiten. Wir
halten ein beliebiges j ≥ 1 und einen beliebigen Prozess (Zi : i ≤ ξj) bis zum Index ξj fest.
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Die Wahrscheinlichkeit, dass Zξj+1 ein Knoten ist, der nicht in {π1, . . . , πj} vorkommt, ist
1 − j

n . Das ist gleichbedeutend mit ξj+1 = ξj + 1 und Lj+1 = πj und π−1(Lj+1) = vj .
Wird πj+1 nicht direkt nach πj entdeckt, so gibt es ein M ≥ 1 mit ξj+1 = ξj +M + 1. Die
Knoten auf dem Abschnitt (Zξj , . . . , Zξj+M = Zξj+1−1) sind unabhängig voneinander und
gleichverteilt auf der Menge der Knoten zuvor besuchten Knoten {π1, . . . , πj}. Somit ist
für den Fall ξj+1 = ξj +M + 1 mit M ≥ 1, Lj+1 gleichverteilt auf der Menge der Knoten
{π1, . . . , πj} und somit π−1(Lj+1) gleichverteilt auf der Menge {1, . . . , j}.

Zusammen ergibt sich für die Wahrscheinlichkeiten:

∀i ∈ {1, . . . , j − 1} :

P(π−1(Lj+1) = vi|Zξ1 , . . . , Zξj ) =P(Lj+1 = πi|Zξ1 , . . . , Zξj ) =
1

n
P(π−1(Lj+1) = vj |Zξ1 , . . . , Zξj ) =P(Lj+1 = πj |Zξ1 , . . . , Zξj )

=P(Lj+1 = πj |Zξ1 , . . . , Zξj ∧ Zξj+1 = Zξj+1
)

+ P(Lj+1 = πj |Zξ1 , . . . , Zξj ∧ Zξj+M+1 = Zξj+1
)

=1− j

n
+

1

n
= 1− j − 1

n

Die Wahrscheinlichkeiten stimmen somit mit 4.2.1 überein. Die generierten Bäume sind
also gleichverteilt auf der Menge aller Spannbäume von Kn.

Der Punkt ist, dass wir für den Groundskeeper Algorithmus nur einen endlichen Teil
des Random Walks brauchen um den Spannbaum zu konstruieren. Wir benötigen nur die
Reihenfolge der Entdeckung der Knoten und von welchem Knoten aus ein Knoten entdeckt
wurde. Mit 4.5 können wir diese Eckpunkte des Random Walks direkt generieren, ohne
einen ganzen Random Walk durchlaufen zu müssen.

Beispiel 4.2.0.1. Als Beispiel betrachten wir den vollständigen Graphen K4.

i 0 1 2 3 4 5 6 7 8 9 10 11 12

Zi v2 v1 v2 v2 v1 v1 v2 v3 v3 v4 v1 v1 v3
πi v2 v1 v3 v4
ξi 0 1 7 9
Li v2 v2 v3

Abbildung 4.6: Beispiel für die Familie Z und die daraus konstruierten Familien ξ, π und
L
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v1 v2

v3 v4

(a) vollständiger Graph mit 4 Knoten

v1 v2

v3 v4

(b) Spannbaum von K4 durch 4.6
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5 Blätter von Spannbäumen

In den vorangegangenen Kapiteln, Kapitel 3 und 4, haben wir detailliert dargestellt, wie
man zufällige Graphen und Spannbäume generieren kann. Die Untersuchung von Eigen-
schaften zufälliger Graphen ist von besonderem Interesse, da sie als eine Art Nullhypothese
für die Struktur realer Systeme dienen können. Beispielsweise finden wir solche Systeme in
Straßennetzen, sozialen Netzwerken und im Internet. In diesem Kapitel steht die Analyse
der Anzahl von Blättern in zufälligen Spannbäumen im Fokus. Ein Blatt in einem Graphen
ist ein Knoten, der lediglich mit einem einzigen anderen Knoten verbunden ist. Unser Ziel
ist es, ausgehend von einem r-regulären Graphen, die Wahrscheinlichkeit abzuschätzen,
dass ein bestimmter Knoten ein Blatt ist. Hierzu werden wir den Parameter r nutzen, um
diese Schranken zu bestimmen.

5.1 Oberer Schranke
Proposition 5.1.0.1 (Proposition 5). Bezeichne mit T die gleichverteilte Zufallsvariable
auf den Spannbäumen eines zusammenhängenden r-regulären Graphen G = (V,E) mit
r > 3. Sei v ein beliebiger Knoten von G, dann gilt:

P(v ist ein Blatt von T ) ≤ exp(−r − 1

2r
)

[Ald90, Proposition 5]

Beweis. Sei (Xj ; j ≥ 0) der Random Walk aus 4.1. Sei v ∈ V beliebig, fest. Sei N(v) wie
in 2.1.1 die Menge der Nachbarn von v. Bezeichne mit αi den Index j von Xj des i-ten
Besuchs der Menge N(v).

α1 = min{j ≥ 0|Xj ∈ N(v)}
αi+1 = min{j > αi|Xj ∈ N(v)}

(5.1)

Sei Ti = (V,Ei) der durch den Random Walk Xj bis zum index αi induzierte Spannbaum,
also der, der durch den Groundskeeper Algorithmus vom Random Walk (Xj ; j ≤ αi) erzeugt
wird. Bezeichne mit deg(v, Ti) den Grad vom Knoten v im Graphen Ti. Definiere:

Di =

{
0 falls deg(v, Ti) = 0

deg(v, Ti)− 1 sonst

Bemerkung 5.1.0.1.

0 ≤ Di ≤ r − 1

da G ein r-regulärer Graph ist und somit deg(v, Ti) ≤ r gilt.
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v a

v2

v3

v4

v5

v6

v7

v8

v9

b

Abbildung 5.1: Random Walk auf dem 5-regulären Graphen mit möglichen Bäumen T1 in
grün und blau

Da im Baum T1 nur ein Knoten aus N(v) nämlich a := Xα1 besucht wurde, kann a nur
entweder von v oder einem Knoten b ∈ V \ (N(v) ∪ {v}) erreicht worden sein. Im ersten
Fall gilt {v, a} ∈ E1 und der Baum T1 besteht nur aus den Knoten V = {v, a} und der
Kantenmenge E1 = {{v, a}}. Im zweiten Fall gilt {b, a} ∈ E1.

{v, a} ∈ E1 ⇒ deg(v, T1) = 1⇒ D1 = 0

{b, a} ∈ E1 ⇒ deg(v, T1) = 0⇒ D1 = 0

Und somit gilt D1 = 0.

Bemerkung 5.1.0.2.

Ei ⊆ Ei+1 ⇒ Di ≤ Di+1 (5.2)

wobei Gleichheit bei Ei = Ei+1 gilt.

Sei i ≥ 1 und Xαi+1 = a ∈ N(v). Es gibt 3 Möglichkeiten, wie a erreicht werden kann:

1. a wird von v erreicht und {v, a} ∈ Ei+1 \ Ei ⇒ Di+1 = Di + 1

2. a wird von v erreicht und {v, a} ∈ Ei ⇒ Di+1 = Di

3. a wird von einem Knoten b ∈ V \ (N(v) ∪ {v}) erreicht. ⇒ Di+1 = Di

Somit gilt:

Bemerkung 5.1.0.3.
Di+1 ∈ {Di, Di + 1}
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Definition 5.1.1.
Γ(αi) := |{Xj ∈ N(v)|j ≤ αi}|

Γ(αi) ist also die Menge der unterschiedlichen Knoten in N(v), die bis zum Zeitpunkt αi

besucht wurden.

Bemerkung 5.1.0.4.
Γ(αi) ⊆ Γ(αi+1)

In einem r-regulären Graphen gilt:

|N(v)| = r

somit
Falls v ein Blatt von T ist, dann gilt ∀i ≥ 1 : Di = 0 und wegen der Monotonie von 5.2

gilt:

∀i ≥ 1 : P(Di = 0) ≥ P(Di+1 = 0)

Somit gilt:

∀i > r : P(Dr = 0) ≥ P(Di = 0)

Woraus

P(v ist ein Blatt von T ) ≤ P(Dr = 0) (5.3)

folgt.

Lemma 5.1.1.

∀j ≥ 1 ∀1 ≤ i < j :

P(Dj = 0, Dj−1 = 0, . . . , Dj−i = 0) = P(Dj = 0, Dj−1 = 0, . . . , D1 = 0)

Beweis.
”≥”: folgt sofort aus

(Dj = 0, Dj−1 = 0, . . . , D1 = 0)⇒ (Dj = 0, Dj−1 = 0, . . . , Dj−i = 0)

”≤”: Sei j ≥ 1 und 1 ≤ i < j. Wir nehmen an , dass P(Dj = 0, Dj−1 = 0, . . . , D1 = 0) <
P(Dj = 0, Dj−1 = 0, . . . , Dj−i = 0) gilt. Es gilt:

P(Dj = 0, Dj−1 = 0, . . . , D1 = 0) < P(Dj = 0, Dj−1 = 0, . . . , Dj−i = 0)

⇔P(Dj−i−1, . . . , D1 = 0|Dj = 0, . . . , Dj−i = 0)P(Dj , . . . , Dj−i = 0)

P(Dj = 0, Dj−1 = 0, . . . , Dj−i = 0)

⇔P(Dj−i−1, . . . , D1 = 0|Dj = 0, . . . , Dj−i = 0) < 1

⇔1 < 1

Widerspruch!
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Somit gilt:

P(Dj = 0) = P(Dj = 0, Dj−1 = 0)

= P(Dj = 0|Dj−1 = 0)P(Dj−1 = 0)

und dadurch

P(Dj = 0) =

j−1∏
i=1

P(Di+1 = 0|Di = 0) (5.4)

Wir betrachten nun die Wahrscheinlichkeit, dass Di+1 = 0 gegeben Di = 0. Dazu ist es
leichter die Gegenwahrscheinlichkeit P(Di+1 = 1|Di = 0) zu betrachten. In dieser Situa-
tion befindet sich der Random Walk an einem Knoten Xαi ∈ N(v) und uns interessiert,
mit welcher Wahrscheinlichkeit der Random Walk im nächsten Schritt v besucht und im
übernächsten Schritt einen Knoten besucht, der noch nicht entdeckt wurde. Die Wahr-
scheinlichkeit, dass der Random Walk im nächsten Schritt v besucht ist 1

r da jeder Knoten
r Nachbarn hat. Die Wahrscheinlichkeit, dass der Random Walk im übernächsten Schritt
einen Knoten besucht, der noch nicht entdeckt wurde ist 1 − Γ(αi)/r, da bereits Γ(αi)
Knoten um v entdeckt wurden. Es gilt also:

P(Di+1 = 1|Di = 0) =
1

r
(1− Γ(αi)

r
)

und daher
P(Di+1 = 0|Di = 0) = 1− 1

r
(1− Γ(αi)

r
) (5.5)

Mit 5.4, 5.5 folgt für 2 ≤ j ≤ r:

P(Dj = 0) =

j−1∏
i=1

(
1− 1

r
(1− Γ(αi)

r
)

)

≤
j−1∏
i=1

(
1− 1

r
(1− i

r
)

) (5.6)

wobei wir dabei genutzt haben, dass ∀i ≥ 1 : Γ(αi) ≤ i gilt. Das sieht man leicht, da
nach i besuchen der Menge N(v) maximal i verschiedene Knoten aus dieser Menge besucht
wurden. Mit 5.3 folgt:

P(v ist ein Blatt von T ) ≤ P(Dr = 0)

≤
r−1∏
i=1

(
1− 1

r
(1− i

r
)

)
Für den letzten Schritt benutzen wir die Tatsache, dass ∀y ∈ R : 1 − y ≤ e−y gilt. Sei
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yi = 1/r(1− i/r), dann gilt:

P(v ist ein Blatt von T ) ≤
r−1∏
i=1

(
1− 1

r
(1− i

r
)

)

=
r−1∏
i=1

(1− yi)

≤
r−1∏
i=1

e−yi

= exp(−
r−1∑
i=1

yi)

Wir berechnen nun
∑r−1

i=1 yi:
r−1∑
i=1

yi =
1

r

r−1∑
i=1

(
1− i

r

)

=
r − 1

r
− 1

r2

r−1∑
i=1

i

=
r − 1

r
− 1

r2
r(r − 1)

2

=
r − 1

r
− r − 1

2r

=
r − 1

2r

Und somit gilt:
P(v ist ein Blatt von T ) ≤ exp(−r − 1

2r
)

5.2 Untere Schranke
Wie der Graph in Abbildung 5.2 zeigt, kann es Knoten in einem Graphen geben, die nie ein
Blatt in einem Spannbaum sein können. Aus diesem Grund können wir als untere Schranke
für P(v ist ein Blatt von T ) nur 0 verwenden. Statt die Wahrscheinlichkeit für einen indi-
viduellen Knoten zu betrachten, schätzen wir die durchschnittliche Wahrscheinlichkeiten,
für einen Knoten ein Blatt zu sein, ab.

Satz 5.2.1.
avev∈GP(v ist ein Blatt von T ) ≥ α(r)

mit

α(r) =

r−1∑
j=2

r−1(1− j/r)(1−
j−1∏
i=1

(1− r−1(1− i/r)))
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v

Abbildung 5.2: 3-regulärer Graph in dessen Spannbäumen v nie ein Blatt sein kann

Es bezeichnet

avev∈GP(v ist ein Blatt von T ) = 1

|V |
∑
v∈G

P(v ist ein Blatt von T ).

Beweis. Wir bezeichnen mit M = min(i : Di = 1) den ersten Index i in dem der Knoten v
in dem durch den Random Walk definierten Baum Ti kein Blatt mehr ist.

Bemerkung 5.2.1.1. M ist wohldefiniert, da der Random Walk mit Wahrscheinlichkeit
1 jeden Knoten besucht.

Proposition 5.2.1.1. P(v ist ein Blatt von T ) = P(M =∞)

Beweis. Da für den Fall dass v ein Blatt von T ist gilt, dass ∀i ≥ 1 : Di = 0 und somit
M = min{} =∞.

Mit D∞ = deg(v, T )−1 bezeichnen wir den Grenzwert von Di für i→∞, also den Grad
von v im fertigen Spannbaum T weniger 1. Wir können nun D∞ ausdrücken als:

D∞ =

∞∑
j=1

(Dj+1 −Dj)

= 1(M<∞) +
∞∑
j=1

(Dj+1 −Dj)1(Dj>0)

Wir drücken den Erwartungswert für den grad von v im fertigen Spannbaum T durch D∞
und M aus:

E[D∞] = E[1(M<∞)] + E[
∞∑
j=1

(Dj+1 −Dj)1(Dj>0)]

= P(M <∞) +
∞∑
j=1

E[(Dj+1 −Dj)1(Dj>0)]

= P(M <∞) +
∞∑
j=1

E[(Dj+1 −Dj)]P(Dj > 0)

(5.7)
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Den Erwartungswert E[(Dj+1 − Dj)] können wir explizit anschreiben und für 1 ≤ j ≤ r
abschätzen als:

E[(Dj+1 −Dj)] = 0 · P(Dj+1 −Dj = 0) + 1 · P(Dj+1 −Dj = 1)

= P(Dj+1 = Dj + 1)

=
1

r
(1− Γ(ξj)

r
)

≥ 1

r
(1− j

r
)

Somit folgt aus 5.7:

E[D∞] ≥ P(M <∞) +

r−1∑
j=1

1

r
(1− j

r
)P(Dj > 0)

Mit Proposition 5.2.1.1 gilt:

E[D∞] ≥ P(v ist kein Blatt von T ) +
r−1∑
j=1

1

r
(1− j

r
)P(Dj > 0) (5.8)

⇔ E[D∞] ≥ 1− P(v ist ein Blatt von T ) +
r−1∑
j=1

1

r
(1− j

r
)P(Dj > 0)

(5.9)

⇔ P(v ist ein Blatt von T ) ≥ 1− E[D∞] +

r−1∑
j=1

1

r
(1− j

r
)P(Dj > 0)︸ ︷︷ ︸

≥α(r)

(5.10)

Die Abschätzung für α(r) folgt aus 5.6:

P(Dj > 0) = 1− P(Dj = 0) ≥ 1−
j−1∏
i=1

(
1− 1

r
(1− i

r
)

)
Wir können den Durchschnittlichen Erwartungswert avevE[D∞] berechnen:

Lemma 5.2.2.

avev deg(v, T ) =
1

n

∑
v∈T

deg(v, T ) = 1

n
2(n− 1) = 2− 2

n

Somit folgt aus der Definition von D∞:

avevE[D∞] = 1− 2

n

Somit können wir bei 5.10 fortfahren und erhalten:

avevP(v ist ein Blatt von T ) ≥ 1− (1− 2

n
) +

r−1∑
j=1

1

r
(1− j

r
)

(
1−

j−1∏
i=1

(
1− 1

r
(1− i

r
)

))

=
2

n
+ α(r) ≥ α(r)
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5.3 Empirische Verteilung der Blätter

Abbildung 5.3: Wahrscheinlichkeit für einen Knoten in einem UST ein Blatt zu sein, in
Abhängigkeit der Regularität der Graphen. Graph mit 100 Knoten, 1000
getestete UST pro Knoten

In Abbildung 5.3 ist die Wahrscheinlichkeit für einen Knoten in einem UST ein Blatt
zu sein in Abhängigkeit der Regularität des Graphen mit 100 Knoten dargestellt. Jeder
der 100 Knoten wurde mit 1000 zufälligen UST getestet, die mit Hilfe des Groundskee-
per Algorithmus generiert wurden. TODO: Referenz auf Groundskeeper Algorithmus Die
Wahrscheinlichkeiten erweisen sich als sehr stabil und liegen in etwas zwischen 0.3 und 0.4.
Man sieht ebenfalls, das die Abschätzungen sehr großzügig waren, da die Schranken sehr
weit weg liegen.
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