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Abstract

Der Groundskeeper Algorithmus liefert eine Methode, um, ausgehend von einem zu-
sammenhangenden, ungerichteten, endlichen Graphen, einen Spannbaum zu erzeu-
gen. Ziel dieser Arbeit ist es, diesen Algorithmus zu beschreiben und anschlieflend zu
beweisen, dass die dadurch konstruierten Spannbdume gleichverteilt auf der Menge
aller Spannbdume des Graphen sind. Dabei werden grundlegende Erkenntnisse aus
der Theorie der Markov-Ketten gezeigt und verwendet. Im zweiten Teil der Arbeit
wird die Implementierung des Groundskeeper Algorithmus in Python présentiert so-
wie Ergebnisse statistischer Auswertungen von dadurch generierten Baumen.
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1 Einleitung

Ein Graph, also eine Menge von Knoten, welche mit Kanten verbunden sind, kann fir
viele Systeme mit denen wir taglich Kontakt haben, stehen. Die Menge der Knoten
konnte beispielsweise Haushalte symbolisieren und die Kanten Leitungen, welche die
Héauser mit Wasser oder Gas versorgen. Ein Graph konnte aber auch fiir Computer-
systeme stehen, die durch Kabel miteinander kommunizieren kénnen. In den meisten
Féllen haben diese beiden Szenarien gemeinsam, dass ein Anschluss oder eine Verbin-
dung zum Netzwerk der Wasserleitungen bzw. des Internetanbieters ausreichend ist.
Zwei Wasseranschliisse sowie zwei Internetanschliisse sind zum einen meistens nicht
notwendig und zum anderen eine Frage der Kosten. Wie verbindet man die Haushalte
einer Stadt miteinander, wenn die Verbindungen der vorhandenen Straflenarchitek-
tur folgen? Des Weiteren ist zu beriicksichtigen, dass nicht jede Verbindung gleich
teuer ist. Beim Legen einer Leitung ist beispielsweise die Verlegungstiefe im Erdreich
nicht immer gleich. Als Antwort auf diese Frage dient der minimale Spannbaum des
Graphen, der fiir das System steht.

Spannbdume finden dariiber hinaus Anwendung in Gebieten wie der Clusteranalyse
und der Echt-Zeit Gesichtserkennung. Die allgemeinen Eigenschaften von Spannbau-
men sind fiir die verschiedensten Branchen von Bedeutung, weswegen sie auch in der
Mathematik vielstudierte Objekte sind.

Ausgehend von einem bestimmten Graphen, welche Eigenschaften, wie Radius oder
Durchmesser, kann man sich von einem Spannbaum erwarten? Um diese Frage zu be-
antworten ist es von Vorteil, eine Methode zu haben, um einen zufélligen Spannbaum
eines Graphen zu erstellen. Diese Methode liefert der Groundskeeper Algorithmus.
Ziel dieser Arbeit ist es, diesen Algorithmus zu beschreiben und anschliefend zu
beweisen, dass die dadurch konstruierten Spannbdaume gleichverteilt auf der Menge
aller Spannbdume des Graphen sind. Diese Arbeit orientiert sich am Artikel The
random walk construction of uniform spanning trees and uniform labelled trees von
D. J. Aldous.



2 Konstruktion und Beweis

2.1 Konstruktion

Sei im folgenden G' = (V, E) ein endlicher zusammenhangender ungerichteter Graph
mit Knotenmenge V' und Kantenmenge £/ C V x V. Mit r, bezeichnen wir den Grad,
die Anzahl der Nachbarn, eines Knotens v aus V. Fiir zwei Knoten v, w € V schreiben
wir v ~ w falls (v,w) € E, v,w Nachbarn sind. Mit (X,;j > 0) bezeichnen wir einen
Randomwalk auf dem Graphen G' mit einem zuféllig ausgewahlten Startknoten Xj.
Fiir einen zufilligen Startknoten v gilt dann

v v itj=0
T lwfirwe{weViw~ X4} ifj >0

wobei jedes w € {w € V : w ~ X;_;} gleich wahrscheinlich ist. Das heifit, dass fiir
alle Knoten in V' gilt, dass die Wahrscheinlichkeit, dass ein Knoten v aus V' der erste
Knoten X, = v ist, 1/|V] ist. Fur einen beliebigen Schritt X; = v mit j > 0 des
Randomwalks und eine Kante (v, w) aus E gilt, dass die Wahrscheinlichkeit, dass der
néchste Schritt X, = w ist, gleich 1/r, ist. Der Randomwalk terminiert, wenn alle
Knoten von V erschlossen wurden. Da GG endlich ist, terminiert ein Randomwalk mit
Wahrscheinlichkeit 1.

Auf Grundlage dieses Randomwalks kostruieren wir einen Spannbaum des Graphen
G und gehen dabei folgendermaflen vor. Wir betrachten die verwendeten Kanten eines
Randomwalks, also die Menge

{(u,v) e E|3Fi>0:X;=u AN X;11 =v}

und entfernen die Kanten, durch die kein neuer Knoten durch den Randomwalk
erschlossen wurde. Fiir eine genauere Beschreibung definieren wir den Zeitpunkt, an
welchem ein Knoten das erste Mal entdeckt wurde. Wir bezeichnen diesen Zeitpunkt
fiir jeden Knoten v als T,,, der folgendermaflen definiert ist:

T, =min{j > 0: X; = v}
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Da der Randomwalk mit Wahrscheinlichkeit 1 terminiert, sind die T;, wohldefiniert.
Wir kénnen nun einen Teilgraph von GG definieren, mit der Kantenmenge

El = {(XvalaXTv)h) eV \ Xo} (21)
Wir definieren den Teilgraph T = (V, E').

2.2 Spannbaum

Um zu zeigen, dass 7 ein Spannbaum ist, zeigen wir zunédchst, dass 7 zusammen-
héngend ist.

Wir nummerieren dazu die Knoten in V' in der Reihenfolge ihrer Entdeckung im
Randomwalk und zeigen, dass der Graph, der durch die Knoten Viy = {vy,..., vy}
und die Kantenmenge Ey = {(Xr,—1, X7,)|v € Vx \ Xo}, N < |V, definiert ist,
zusammenhangend ist. Wir fithren einen Induktionsbeweis iiber V.

Induktionsanfang: der Graph Vi = ({v;},0) ist als trivialer Graph zusammenhén-
gend.

Induktionsvorraussetzung:
der Graph G = ({v1,...,on}, {(X7,—1, X1,)|v € VN \ Xo}) mit N < |V ist zusam-
menhangend.

Induktionsschritt: Der Knoten von dem aus vyy; entdeckt wurde, ist der Knoten
XTvNH—l‘ Da dieser Knoten zuvor entdeckt worden sein muss, ist XTvN+1—1 in V. Da
nach der Induktionsvorraussetzung Vy zusammenhéngend ist, existiert ein Pfad zwi-
schen v; und vy. Somit konnen wir diesen Pfad durch die Kante (XTUN+1 _1, XTvN+1) €
En 1 erweitern und haben einen Pfad zwischen v; und vy 1 gefunden. Somit ist also
v; mit jedem anderen Knoten in Vi, verbunden, wodurch Gy zusammenhédngend

ist.

Wir haben also bewiesen, dass fiir N < |V| der Graph Gy zusammenhéngend ist.
Dadurch ist insbesondere der Graph G' = G|y = zusammenhangend, was wir zeigen
wollten.

Um zu zeigen, dass GG ein Spannbaum ist, bleibt noch zu zeigen , dass es in GG keine
Kreise gibt. Dazu zeigen wir zunéchst folgende Lemmata:
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Lemma 2.2.1. Ein Graph G = (V, E) mit |E| < |V| hat mindestens ein Blatt, also
einen Knoten mit nur einem Nachbarn.

Beweis. Wir nehmen an, ein Graph G = (V, E) mit |E| < |V/| habe kein Blatt. Dann

sind alle Knoten von GG mindestens vom Grad 2. Summiert man die Grade der Knoten
von V' auf, zdhlt man alle Kanten doppelt, somit ergibt sich:

B[ =) r, >2|V].

veV
Und dadurch
|El > V]
was ein Widerspruch zur Annahme |E| < |V ist. Also hat jeder Graph G = (V, E)
mit |E| < |V| mindestens ein Blatt. O

Lemma 2.2.2. Ein zusammenhdngender Graph G mit n Knoten hat mindestens
n — 1 Kanten.

Beweis. Fir n < 3 lassen sich alle moglichen Graphen leicht aufzeichnen, um die
Aussage zu verifizieren.

)
()
e@@

Abbildung 2.1: Alle zusammenhéngenden Graphen mit 3 oder weniger Knoten

Seil also nun n > 4. Um einen Widerspruch zu erzeugen, betrachten wir den Gra-
phen G' mit minimaler Knotenanzahl n, dessen Anzahl der Kanten nicht grofler als
n — 2 ist.

Wir entfernen einen Knoten vom Grad 1, welcher aufgrund von Lemma 2.2.1 exi-
sitiert, und dessen zugehorige Kante. Dadurch erhalten wir einen neuen zusammen-
hangenden Graphen G’ mit Knotenanzahl n — 1 und weniger als n — 2 Kanten.
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Dieser Graph ist zusammenhéangend und hat mindestens 2 Kanten weniger als Kno-
ten, wodurch der urspriingliche Graph G nicht der Graph mit dieser Eigenschaft und
minimaler Knotenanzahl gewesen sein kann. Somit kann dieser Graph G nicht exis-
tieren und ein zusammenhdngender Graph G mit n Knoten hat mindestens n — 1
Kanten.

O
Satz 2.2.3. Der durch die Kanten in 2.1 definierte Graph ist kreisfrei.

Beweis. Wir nehmen an es gabe in dem durch 2.1 definierten Graphen G = (V, E')
einen Kreis. Dann kénnen wir eine Kante e aus diesem Kreis entfernen, sodass der
G' = (V,E"\ e) immer noch zusammenhdngend ist. Allerdings gilt |E'| = |[V] — 1
und somit |E’ \ e| = |V| — 2. Wir haben aber in Lemma 2.2.2 gezeigt, dass ein
zusammenhéngender Graph mit Knotenzahl |V| mindestens |V| — 1 Kanten haben

muss. Das ist ein Widerspruch und somit ist G kreisfrei.
]

Damit haben wir gezeigt das der durch 2.1 definierte Graph 7T ein Spannbaum des
originalen Graph G ist.

Jeder Spannbaum von G ist durch diese Konstruktion moglich. Einem bestimmten
Spannbaum t konnten mehrere verschiedene Randomwalks zu Grunde liegen. Einer
ist aber gerade jener, der durch die Tiefensuche auf dem Baum ¢ bestimmt wird.

2.3 Gleichverteilung

Wir zeigen im Folgenden, dass die durch einen Randomwalk definierten Baume gleich-
verteilt sind.

Dazu brauchen wir den Begriff eines stationaren stochastischen Prozesses.

Definition 2.3.1 (stochastischer Prozess). [0] Sei (€2, F,P) ein Wahrscheinlichkeits-
raum und (Z, Z) Messraum und 7" eine Indexmenge. Dann heifit eine Familie X =
(X})ier messbarer Abbildungen

X, Q= ZteT

stochastischer Prozess (mit Zustandsraum 7).
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Fir uns ist ein Randomwalk (X; j > 0) ein stochastischer Prozess mit dem Raum
Q aller moglichen Randomwalks auf GG. Der Zustandsraum Z ist die Menge V' der
Knoten von G und T die Indexmenge Nj.

Definition 2.3.2 (stationérer stochastischer Prozess). [5] Ein stochastischer Prozess
(X¢)ter mit der Indexmenge T' heifit stationar, wenn die Verteilung von (Xgi¢)ier
nicht von der Verschiebung s € T' abhangt, also wenn gilt

Px((Xstoyier) = Px((X)ier)
fir alle s €T

Definition 2.3.3 (Markov-Kette). [¢] Ein stochastischer Prozess (X;):en, der nur
Werte aus einem hochstens abzéhlbaren Zustandsraum Z = {z,...,2,} annimmt,
wird Markov-Kette genannt, wenn gilt:

P($t+1 = Zt+1|$t =2, Tg—1 = Zg—1y---,L0 = jo)

= IP]($t+1 = Zt+1|$t = Zt)

alle t € N und alle (z¢,1,...,2) € Z'2. Diese Eigenschaft nennt man auch Ge-
déchtnislosigkeit. Die Gréflen

Dew(t) = P(ayy = v|ay = 2)

werden Ubergangswahrscheinlichkeiten genannt. Sind diese konstant, so spricht man
von stationidren Ubergangswahrscheinlichkeiten und einer homogenen Markov-Kette.
Die Matrix P(¢) mit Eintrégen p, () mit z,v € V ist dann die Ubergangsmatrix der
Markov-Kette. Da wir nur mit homogenen Markov-Ketten zu tun haben, werden wir
P fiir die Ubergangsmatrix schreiben.

Wir bezeichnen im folgenden die Anzahl der Spannbaume von G mit N(G) und die
Menge aller gewurzelten Spannbaume von G mit §. Um zu zeigen, dass die Verteilung
der Spannbaume (ohne Wurzel) uniform ist, also

1 V]
P(T=t) = —= = —,
N(G) |S]
mit einem Spannbaum ¢, betrachten wir zunéchst die gewurzelten Spannbaume, die
durch einen Randomwalk (X;;j > 0) definiert sind aber die Konstruktion wie in
2.1 zu einem spateren Zeitpunkt m startet. Bezeichne mit 7" den Index des ersten
Besuches des Knotens v ab dem Index m, also

T" =min{j > m: X; = v}.



2 Konstruktion und Beweis

Dann ist

Sm = (ViA(Xzp 1, (Xppylv € VA Xin}) €8

der Spannbaum mit Wurzel X,,,, der durch den Randomwalk (X, X;11, Xini2, .-+ )
mit m > 0 definiert wird. Dadurch erhalten wir eine Folge von gewurzelten Spann-
baumen (S,,)m>o0. Im néchsten Schritt betrachten wir einen Randomwalk (X;; —oo <
J < 00) auf G, der mit den ganzen Zahlen indexiert ist. Der Randomwalk (X;; —oo <
Jj < o) induziert dann eine ebenfalls tiber die ganzen Zahlen indexierte Folge von
gewurzelten Spannbaumen (S,,; —0o < m < o0). Wir werden uns eine solche Folge
von gewurzelten Spannbdumen in Riickwartszeit

(Sims Sm—1s Sm—2, -+ - ), (2.2)

welche bei einem Index m € Z beginnt, genauer ansehen.

Definition 2.3.4 (stationdre Verteilung). [6] Sei (X¢)ier eine Markov-Kette mit
Indexmenge 7', Zustandsraum Z und Ubergangsmatrix P. Eine Verteilung 7 heifit
stationar, falls fiir alle v € Z gilt:

> w(2)psp = m(v) (2.3)

Fasst man 7 als Zeilenvektor auf, so kann man 2.3 auch in der Form

P =m

beschreiben.

Definition 2.3.5 (erreichbar, kommunizierend). [6] Sei (X})en, eine Markov-Kette,
mit Zustandsraum Z, Ubergangsmatrix P und zwei Zustinden i, j € Z. Der Zustand
j heifit von 7 aus erreichbar, falls es einen Pfad von ¢ nach j gibt. Das heifit,

Ist 7 auch von j aus erreichbar, so heiflen ¢ und j kommunizierend.
Definition 2.3.6 (irreduzibel). [0] Ist C' C Z eine Teilmenge des Zustandsraums

Z einer Markov-Kette und kommunizieren alle 7,7 € C miteinander, so heifit C'
irreduzibel. Ist Z irreduzibel, so heifit die Markov-Kette irreduzibel.
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Lemma 2.3.1. Sei P die Ubergangsmatriz einer irreduziblen Markov-Kette und sei
A =[P —1,1] die Matriz P — I mit einer zusdtzlichen letzten Spalte mit nur 1 als
FEintrigen. Dann gilt, rang(A) = n wobein die Anzahl der Zustinde der Markov-Kette
151.

Beweis. Da die Zeilen jeder Ubergangsmatrix P aufsummiert 1 ergeben, gilt P1 = 1
und somit hat die Gleichung Az = 0 die Lésung (1,0)%. Sollte rang(A) = n nicht
gelten, so miisste es eine weitere nicht triviale Losung (y,a)? geben, die orthogo-
nal zu (1,0)7 ist. Also muss gelten Y .y; = 0, wobei aber y # 0, da sonst auch
a = 0 gelten wiirde, wodurch die weitere Losung trivial wire. Wegen A(y,a)? = 0
gilt Py + al = y. Jeder Eintrag von y ist also eine Konvexkombination der Ein-
trage von y plus a. Da die Markov-Kette irreduzibel ist, gibt es einen Zustand k,
dessen zugehériger Eintrag im Vektor y maximal ist und welcher auf dem Ubergangs-
graphen der Markov-Kette neben einem Zustand [ liegt, dessen zugehoriger Eintrag
im Vektor y geringer ist. Dieses Paar k,[ muss existieren, da sonst alle Werte in
y gleich grof wéren, wodurch sofort y = 0 folgen wiirde. Somit ist py; # 0 und da-
durch y, > >, priy;. Dalaut Annahme y, = ). priy; +a gelten muss, ist also o > 0.

Waiéhlen wir hingegen £ als Zustand mit minimalen Wert in y, so erhalten wir @ < 0
und somit einen Widerspruch.

Somit kann es keine zweite nicht triviale Losung von Ax = 0 geben, wodurch
rang(A) = n gilt. [2] O

Korollar 2.3.1.1. dim({7: 7P =n}) < 1.

Beweis. Fir ein 7 mit ) . m = 1 und 7 ist Linkseigenvektor von P muss gelten,
7A=(0,1). Aus 1A = (AT7T)T und rang(A) = rang(A7T) folgt dann

dim({zA|x € R"}) = n, womit die Abbildung x +— xA injektiv ist. Somit hat

mA = (0,1) hochstens eine Losung und durch skalieren dieser Losung erhalten wir
den Raum {A7m: A € R,mA = (0,1)} = {7 : 7P = 7}, womit die Aussage gezeigt ist.
[4] O

Definition 2.3.7. [2] Sei p(¢) die Verteilung der Zustande einer Markov-Kette nach
t Schritten, p(t); bezeichnet die relative Haufigkeit des Auftretens der Zustands i.
Somit gilt klarerweise ). p(t); fiir jedes t. Bezeichne mit a(t) die lingerfristige Ver-
teilung der Zustande.

a(t) = 5 (p(0) + -+ p(t ~ 1))
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Satz 2.3.2 (Fundamentalsatz fir Markov-Ketten). Fir eine irreduzible Markov-
Kette existiert eine eindeutige Verteilung m die mP = werfillt und fir ldngerfristige
Verteilung a(t) gilt, limy o a(t) =7

Beweis.

(p(1) +---+p@) = Z(P(0) +--- +p(t - 1))

Also gilt [b(t)| < 2 und somit kovergiert b(t) = a(t)P — a(t) gegen 0. Dadurch
konvergiert a(t) gegen eine Verteilung 7 fur die 7P = m gilt. Diese Verteilung ist

durch 2.3.1.1 eindeutig. [

Wir werden zeigen, dass die Folge in 2.2 eine Markov-Kette ist und dass (S,,; —0o <
m < 00) ein stationdrer stochastischer Prozess ist , wodurch wir tiber die stationére
Verteilung dieser Markov-Kette, die Verteilung aller gewurzelten Spannbaume erhal-
ten.

Lemma 2.3.3. Ein gewurzelter Spannbaum S; aus der Folge 2.2 mit i« > m ist
vollstindig durch (S;;1, X;) bestimmdt.

Beweis. Dem gewurzelten Spannbaum S;;; liegt der Randomwalk (X;j > i+ 1)
zugrunde. Beginnen wir nun den Randomwalk bei X;, anstelle von X;,, miissen wir
eine neue Kante zu unserem Baum hinzufiigen und zwar die Kante (X;, X;;1). Falls
diese Kante bereits in S;; vorhanden war, gilt S; = S;,1, ansonsten ist die Kante,
die hinzugefiigt wurde als X; in S;;; entdeckt wurde in S; nicht mehr vorhanden, da

ja X; der erste Knoten war. Der Rest des Baumes bleibt hingegen unverandert.|3]
O

Der ausschlaggebende Punkt ist, dass wir die im zweiten Fall iiberfliissige Kante
eindeutig durch S;y; bestimmen konnen. Diese Kante ist ndmlich die Letzte, vom
eindeutigen Weg von X;.; nach X;, im Baum S,,, was folgende Grafik illustrieren
soll.
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Abbildung 2.2: Beispiel zweier Spannbaume mit Wurzel in rot. Links der Spannbaum
Si+1 und Rechts S;. Die Kante (v3,v;) wurde als letzte Kante vom
Weg von X;,; nach X; entfernt.

Wir haben somit gezeigt, dass die Folge aus 2.2 gedéchtnislos ist. Fassen wir (2
bzw. Z aus 2.3.1 als Menge aller Folgen von gewurzelten Spannbadumen bzw. S (die
Menge aller gewurzelter Spannbaume) auf, dann ist eine Familie S™ = (.5;);<, mit
m € Z ein stochastischer Prozess. Somit ist jede Folge wie in 2.2 eine Markov-Kette.

Ein Randomwalk ist ebenfalls eine Markov-Kette, da die Ubergangswahrschein-
lichkeiten nur vom aktuellen Knoten abhangen. Da der Graph G zusammenhangend
ist, ist die Markov-Kette die einen Randomwalk beschreibt irreduzibel und somit
existiert durch 2.3.2 eine eindeutige stationare Verteilung.

Lemma 2.3.4. Die stationdre Verteilung 7 eines Randomwalks auf einem zusam-
menhdngenden, endlichen, ungerichteten Graphen G = (V, E) ist proportional zu dem

Grad der Knoten. Genauer: .
(V) .

" 2[E]

(2.4)

Beweis. Dazu miissen wir zeigen, dass der Vektor 7 ein Linkseigenvektor zum Fi-
genwert 1 der Ubergangsmatrix einer Markov-Kette (X;;m < j < 0o) mit m € Z ist.
Sei P die Ubergangsmatrix, mit Eintrigen p,, = P(X;41 = w|X; = v) fir v,w € V,
dann soll also gelten

a’'p=x"

und somit

Z ﬁ(v)pv,w = W(w)

v

fiur alle w € V. Durch Einsetzen erhalten wir fur festes w

Ty Ty 1 T
;ﬂ'(vnjv,w — ; m}%,w - Z 2|E| o = 2|E| = 7T<w)

v~~Yw

und somit die Behauptung. [

10
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Somit ist in einem Randomwalk (X;;—oco < j < oo) das Auftreten eines be-
stimmten Knotens nicht von der Zeit abhéngig und dadurch zu jedem Zeitpunkt
gleich wahrscheinlich. Ein Randomwalk indexiert mit den ganzen Zahlen, ist also ein
stationdrer stochastischer Prozess. Da ein gewurzelter Spannbaum S,,, m € Z mit
Wahrscheinlichkeit 1 von einer endlichen Folge von Knoten (X, Xii1,. .. Xmin)
abhangt, ist ein gewurzelter Spannbaum zu jedem Zeitpunkt gleich wahrscheinlich
und (S,,; —00 < m < 00) ein stationdrer stochastischer Prozess.

Um die stationdre Verteilung der Markov-Kette von gewurzelten Spannbdumen in
Riickwiirtszeit wie in 2.2 zu ermitteln, wollen wir die Ubergangsmatrix und deswegen
die Ubergangswahrscheinlichkeiten

P(S,, = u|Sps1 = 1)

betrachten, also die Wahrscheinlichkeiten, dass ein gewurzelter Spannbaum wu auftritt
bedingt durch den Nachfolger ¢. Dazu sind die Ubergangswahrscheinlichkeiten eines
Randomwalks (X;; —oo < j < 00) in Ruckwértszeit von Bedeutung

Lemma 2.3.5. Fir einen Randomwalk (X;;—o00 < j < 00), beliebiges m € Z,
v,w eV mitv~w gilt

1
P(Xm_l = U}’Xm = U) = —

Ty

Beweis. Fir den Beweis nutzen wir, dass fiir beliebiges v € V' und einen beliebigen
Schritt m € Z im Randomwalk (X;; —oo < j < 00) gilt,

P(X,, =v) =m(v),

mit 7, der stationdren Verteilung des Randomwalks aus 2.3.4. Dann erhalten wir
nach Definition der bedingten Wahrscheinlichkeit fiir w ~ v

P(Xm_l = w, Xm = U)

P( X, 1 =w| X, =v) =

P(X,, =v)
~ m(w)P(Xy, = 0| X1 = w)
- 7 (v)
Tw 1
_ 2|E| rw
5H]
1
=
und somit die Aussage. ]
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Bezeichne fiir einen Baum ¢, den Grad seiner Wurzel mit r(¢). Bedingt durch einen
gewurzelten Spannbaum S; = v mit ¢ < m der Folge 2.2 von gewurzelten Spannbau-
men, betrachten wir jetzt die Wahrscheinlichkeit fiir einen gewurzelten Spannbaum
Si—1. Dem Baum u liegt der Randomwalk (Xj;j > 4) zugrunde. Fiir den Vorganger-
knoten X;_; kommen dadurch r(u) Knoten in Frage, wobei durch 2.3.5 jeder Knoten
davon gleich wahrscheinlich ist. Somit gibt es auch r(u) Baume aus S die fir S;;
in Frage kommen und die alle gleich wahrscheinlich sind. Bezeichne die Menge dieser
Baume mit D(u). Dann gilt fur festes u € S

L fallst € D
P(S;i_1 = t|S; = u) = {r<u> alls (u)

2.5
0 sonst (25)

Gehen wir in 2.5 allerdings von festem S;_; =t € S aus, so gibt es in der Markov-
Kette 2.2 der gewurzelten Spannbdume, r(t) Nachfolger S; von ¢, fir die die Gleichung
gilt. Die Menge dieser Baume bezeichnen wir mit C(t)

Mit 2.5 kénnen wir die Ubergangsmatrix der Markov-Kette (Sy,, Sp_1, Sym_2) fiir
1 < m aufstellen:
P(Si1 =t]Si=t) P(Si1 =ta|S; =t1) P(Si1 = t3]Si = t1)
]P)(Si_l = t1|51 = tg) P(Si_l = t2|Sl = tg) E
]P)(Si_l = t1|Sl = tg) E

Diese Matrix hat aufgrund von

> rOP(Sm =[S =t) = > r(OP(Sp = '|Smy1 = 1)

tes tec(t!)

den Linkseigenvektor (r(t));cs zum Eingenwert 1.[1]

Um die stationdre Wahrscheinlichkeit der Markov-Kette der gewurzelten Spann-
bédume zu erhalten, miissen wir diesen Vektor noch normieren.
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2 Konstruktion und Beweis

> r(t) =N(G)) _r, =2N(G)|E|

teS veV

Somit ist der Vektor )

IN(G)|E| (r(t)ies)

die gesuchte und wegen Satz 2.3.2 eindeutige stationdre Verteilung 7 der Markov-
Kette.

Da (S,,; —00 < m < 00) ein stationdrer Prozess ist, ist die Verteilung 7 genau der
Vektor der Wahrscheinlichkeiten

wodurch dann

()
FSn =0 = SN @)

fiir einen gewurzelten Spannbaum ¢ gilt.

Somit héngt die Wahrscheinlichkeit des Auftretens eines Spannbaumes nur vom
Grad seiner Wurzel hab.

Kehren wir nun wieder zu dem urspriinglichen Spannbaum 7, der durch den Ran-
domwalk (Xj;j > 0) definiert wird, zuriick.

Ist die Verteilung des Startknotens X die der stationdren Verteilung 2.4 des Ran-
domwalks tber die ganzen Zahlen, so konnen wir auch die stationdre Wahrschein-
lichkeit des Spannbaums anwenden. So ist dann

o
BT =0 = 3o

fiir einen gewurzelten Baum ¢. Wenn wir diese Wahrscheinlichkeit mit der Bedin-
gung eines bestimmten Startknotens X, = w versehen, wobei w € V beliebig ist,
dann ist jeder Spannbaum mit w als Wurzel gleich wahrscheinlich, da diese Baume
alle den selben Grad der Wurzel haben. Da wir jeden Spannbaum von G mit jeder
Wurzel w auffassen konnen, sind die entstehenden Baume ohne Wurzel gleichverteilt.
Ist nun X, bzw. w uniform, so ist immer noch jeder Spannbaum gleich wahrscheinlich.
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3 Implementierung

Im folgenden Abschnitt, werden Skripte prasentiert, welche verwendet wurden, um
die Badume zu untersuchen, die durch die Implementierung des Algorithmus mit einem
bestimmten Graphen entstanden sind. Die Skripten wurden verwendet, um Spann-
bdume zu generieren und anschlieend fiir Eigenschaften wie Durchmesser, Anzahl
der Knoten vom Grad k, Statistiken zu erstellen.

3.1 Generieren von Biaumen

Fiir die Implementierung in Python bietet sich die Library networkx an. Sie umfasst
grundlegende Funktionen, die im Umgang mit Graphen essentiell sind. Zunéchst
werden wir Funktionen betrachten, die verwendet wurden, um Spannbédume zu gene-
rieren. Des Weiteren werden wir darstellen, wie diese Funktionen im Zusammenhang
mit dem in 2.1 beschriebenen Algorithmus stehen.

14
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3 Implementierung

3.1.1 Erstellen eines Randomwalks

Folgender Pythoncode wurde benutzt, um einen Randomwalk auf dem Graphen zu
erstellen, der alle Knoten abdeckt.

def random_walk (graph):
random_node = random.choice(list (graph))

steps = 10xx*6
randomwalk = [random_node]

while len(list (dict.fromkeys(randomwalk))) \
= len(list (graph)):

1 =20
for i in range(steps):
neighbor_list = list (\
graph.neighbors (\

random_ node))

random_node = random.choice(neighbor_list)
randomwalk . append (random_ node)

return (randomwalk )

Abbildung 3.1: Funktion zum Erstellen eines Randomwalks auf einem Graphen. Der
Randomwalk deckt alle Knoten des Graphen ab.

Nach der Ubergabe des Graphen an die Funktion wird in Zeile 3 ein Startknoten
ausgewdhlt, der unserem X, entspricht. Anschlieend definieren wir die Anzahl der
Schritte, die auf dem Graphen gegangen werden sollen, bevor kontrolliert wird, ob
schon alle Knoten besucht wurden. Dies dient dazu, die Laufzeit der Funktion, gegen-
iiber dem Kontrollieren nach jeder Iteration, drastisch zu minimieren. Die Abfolge
der Knoten wird als Liste gespeichert. Um den Randomwalk laufen zu lassen, wird in
der for-Schleife ein zufalliger Nachbarknoten des aktuellen Knotens ausgewéhlt und
zur Liste hinzugefiigt. Die &uflere while-Schleife kontrolliert alle 600 000 Schritte, ob
schon alle Knoten besucht wurden.
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3 Implementierung

3.1.2 Erstellen eines Spannbaumes

Der folgende Code wurde verwendet, um auf Grundlage eines zuvor erstellten Ran-
domwalks mit der Funktion aus 3.1.1, einen Spannbaum zu erstellen.

def create_ tree(randomwalk ):

T = nx.Graph()
T_geordnete knoten = list (dict.fromkeys(randomwalk))
for node in T_ geordnete knoten [1:]:

i = randomwalk.index (node)
T.add_edge(randomwalk [i —1],node)

return (T)

Abbildung 3.2: Funktion zum Erstellen eines Spannbaumes durch einen Randomwalk

Nach Ubergabe eines Randomwalks, der alle Knoten eines Graphen abdeckt, und
der Initierung eines Baumes, erstellen wir in Zeile 5 eine Liste der Knoten in der
Reihenfolge ihrer Entdeckung. AnschlieBend werden in der for-Schleife, die tiber die
Knoten (bis auf den Startknoten) in Reihenfolge ihrer Entdeckung iteriert, die Kanten
nach und nach hinzugefiigt. Die Variable i entspricht hierbei genau

T, =min{j > 0: X, = v}.
da index() den Zeitpunkt der Entdeckung zurtickgibt. Somit kénnen wir die Kante
(Xr7,-1,X7,) = (randomwalk[i-1] ,node)

zur Kantenmenge von 1" hinzufiigen.

3.2 Statistiken anhand eines Beispiels

Als Beispielgraph wurde folgender Graph mit 9835 Knoten und 21856 Kanten ge-
wahlt. Der Radius dieses Graphen betragt 25 und der Durchmesser 50.

16




3 Implementierung

Abbildung 3.3: Beispielgraph in networkx geplottet. Zentrum des Graphen in schwarz
in der Mitte und der Pfad des Durchmessers in rot

Ein Spannbaum, der mit den obigen Skripten erzeugt wurde, kénnte dann folgen-
dermaflen aussehen.

Abbildung 3.4: zufélliger Spannbaum des Beispielgraphen mit Kanten in rot einge-
zeichnet
Um die Grade der Knoten, den Durchmesser und den Radius der Baume sowie die
Hohe der Baume mit Wurzel als Startknoten auszurechnen, wurde folgendes Skript
verwendet.

17
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3 Implementierung

#!/usr/bin/env python3

import networkx as nx

import numpy as np

from networkx.readwrite.graphml import write graphml Ixml

import sys

if len(sys.argv) > 1:
n = int(sys.argv[1l])

else:
print (”"Keine ;Anzahl neuer Baume  gegeben ...”)

n = int (input(”n.=."))
f = open(”heights.txt” ”r+")
already_calculated = len(f.read ().split(”,”)) — 1

for i in range( already_calculated + 1,\
already calculated+n+1):

tree = nx.read_graphml(”Trees/tree”’+str(i))
f.write(”,”+str(nx.eccentricity (tree,list (tree)[0])))
f. flush ()

f.close()

Abbildung 3.5: Skript zum Berechnen von Hohen von gewurzelten Baumen

Dieses Commandlineskript dient dazu, die Hohe beziiglich des Startknotens einer
eingelesenen Anzahl an Baumen zu berechnen. Die Hohen wurden in einer .txt Datei
"heights.txt”gespeichert und neuberechnete Hohen wurden in der Datei angehéangt.
Da die zuvor in 3.1 erstellte Baume in dem Ordner "Treeséls .graphml File abge-
speichert wurden, werden aus diesem Ordner die Baume eingelesen und anschlielend
ihre Hohe bestimmt.

Die Skripte um Durchmesser bzw. Radius eines Baumes zu bestimmen sind ident,
mit der Ausnahme, dass in Zeile 24 nicht die Funktion nx.eccentricity() sondern

18




3 Implementierung

die Funktionen nx.diameter bzw. nx.radius verwendet wurden und die ausgerech-
neten Hohen in einem anderen Textfile gespeichert wurden. Die Anzahl der Knoten
mit bestimmten Grad wurde ebenso berechnet, mit dem Unterschied, dass die ver-
schiedenen Anzahlen als Listen in einem Textfile gespeichert wurden.

Es folgen Plots, welche die Eigenschaften Hohe, Radius, Durchmesser und Grad
der Knoten von generierten Spannbaumen beschreiben.

Hiohe von 20000 Spannbaumen

ﬂ hmmo L +

0.010 === Durchschnitt 199.7

Median 1950

0.008

0.006 |

Density

0.004

0.002

0.000

T T T T T
150 200 250 300 350

Abbildung 3.6: Hohe von 20 000 durch Randomwalks erzeugten Spannbdumen
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3 Implementierung

Durchschnittliche Anzahl der Knoten vom Grad k fur 20000 Baume

=== Durchschnitt 2.0
4000

3500

3000

2500

2000

1500

1000 4

Durchschnittliche Anzahl der Knoten
Durchschnittliche Anzahl der Knoten

500 +

Abbildung 3.7: Durchschnittliche Anzahl der Knoten nach Grad von 20000 Spann-
baumen

Standardabweichung der Anzahl der Knoten vom Grad k fur 20000 Baume

w
=]
1

Standardabweichung
=3
1

10

09 062 038 023 013 007 003 001
T T

U U U U T T
11 1z 13 14 15 16 17 18

Abbildung 3.8: Standardabweichung der Anzahl der Knoten nach Grad von 20000
Spannbdumen
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3 Implementierung

Durchmesser von 4000 Spannbaumen

j——mom o 00 4 4
T

—== Durchschnitt 267.39
-== Median 264.0

0.010

0.008

0.006 -

Density

0.004

0.002

150.0 200.0 250.0 267.4 300.0 350.0 400.0

Abbildung 3.9: Durchmesser von 4 000 durch Randomwalks erzeugten Spannbaumen
des Beispielgraphen.

Radius von 4000 Spannbaumen

(X X 2N ¢

—-==- Durchschnitt 133.94

—-== Median 132.0

0.020

0.015
2
wn
f=
o
0 0.0104

0.005

0.000 T

134 140 220

Abbildung 3.10: Radius von 4 000 durch Randomwalks erzeugten Spannbédumen
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